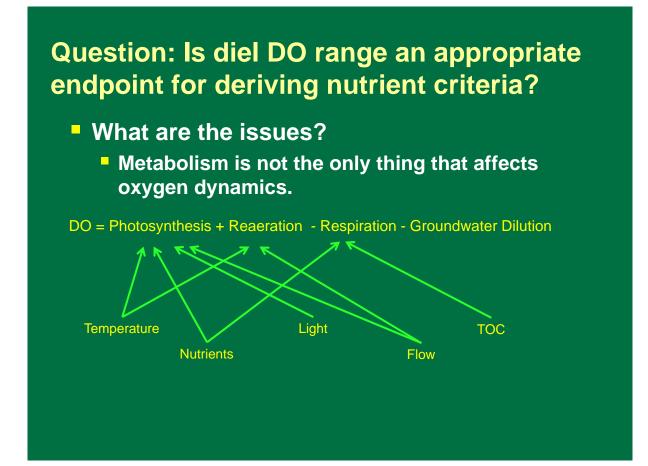


Using Dissolved Oxygen Dynamics to Derive Nutrient Criteria: Tried, True, and Troublesome

Mississippi Water Resources Conference April 3-4, 2012


Matthew B. Hicks, USGS Mississippi Water Science Center, Jackson, MS Kim Caviness, MDEQ, Office of Pollution Control, Jackson, MS Michael J Paul, Tetra Tech, RTP, North Carolina

U.S. Department of the Interior U.S. Geological Survey

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL OF AL

Nutrient Criteria

- Numeric values derived to protect designated uses – including aquatic life
- Oxygen is a clear aquatic life use requirement and DO criteria exist (e.g., 4-5 mg/L)
- Oxygen is affected by nutrient enrichment via photosynthesis
- Many states want to use diel range as an indicator for deriving criteria

Approach

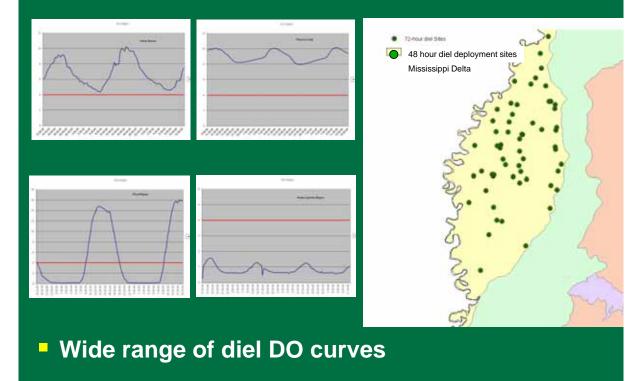
Mass Balance DO Model

- Created simple spreadsheet DO mass balance model (based on equation below)
 - DO = PS R Dilution + Reaeration
- Limited interaction among factors (e.g., depth and reaeration not linked per se)
- Iterative (brute force) manipulations

Empirical Data

- State of MS, USGS monitoring data
- Compared diel DO data to predictors and biological response

Simple Excel DO Mass Balance Model Output


Depth (m)	Temp (C)	P (gO2/n	R m2/hr)	Dilution %	k (h-1)	Mean DO (mg/L)	Min DO (mg/L)	Diel DO Range (mg/L)
0.1	23	0.05	2.5	1	1	7.4	6.7	1.6
0.1	23	0.25	2.5	1	1	7.5	6.7	1.6
0.1	23	1.25	2.5	1	1	7.9	6.8	2.5
0.1	23	2.5	2.5	1	1	8.5	6.8	4.3
0.1	23	2.5	2.5	4	1	8.2	6.6	4.2
0.1	23	2.5	2.5	1	0.25	8.2	4.6	9.6
0.1	23	2.5	2.5	0	0.25	8.6	4.9	9.8
0.5	23	2.5	2.5	1	0.25	8.2	7.3	2.2

Mississippi Empirical Diel Data

- Range of wadeable streams encompassing typical assessment range
 - Mean Q = 230 L/s (<100 to 2000 L/s)</p>
 - Mean width = 4.0 to 57 m
 - Mean depth = 0.2 to 2.8 m
- Large nutrient/productivity gradient
- 48 hr diel deployments
- Invertebrate and water chemistry collected

Mississippi Diel DO database

Data

- Standard transformations
- Pearson correlation
- Forward stepwise regression
 DO = f(TN, TP, Temp, TSS, TOC, Chl, Depth, Width)
- - Same predictors

DO diel Range

- Weak MLR model
 - Best predictor = +Temperature : r²=0.05

CART model

- Best predictors = +Temp, +TOC, -depth, and +width
- PRE: 0.11 to 0.43)

Minimum DO

- More predictive MLR model
 - TOC/-TP : r²=0.20 (higher TOC/TP, lower min DO)
 - TOC and TP were correlated and were best predictors

CART model

- -TP, +Width, -TSS (high TP, shallow streams, with low TSS = lower min DO)
- (PRE: <u>0.37 to 0.65</u>)

What is related to biota?

Correlation with common invertebrate metrics

	MIN DO	DO RANGE
TOTAL TAXA	0.270	0.066
ΕΡΤ ΤΑΧΑ	0.452	0.003
SHANNON	0.254	0.061
% EPT	0.366	0.061
% INTOLERANT	0.343	0.057
% TOLERANT	-0.233	0.016
НВІ	-0.199	-0.065

Data used are preliminary and subject to change

Summary

- Models
 - Diel range responds to more than metabolism
 - Reaeration, dimensions, dilution, etc. all matter

Empirical data

- Poor prediction for range
- Better prediction for minimum DO
- Invertebrates relate (negatively) more to minimum DO than to range

Question: Is diel DO range an appropriate endpoint for deriving nutrient criteria?

- Range is an indicator of metabolism.
- So, it can be an endpoint if all else is equal.
- But, all else is never equal in state monitoring programs.
- Do organisms care about range in DO?
- Help requested.

