

Calculation of water surface elevation using HECRAS 4.1.0 for fixing tailrace elevation for powerhouse site in planned 37 MW Kabeli "A" Hydroelectric Project, Nepal

April, 2012

6/25/2012

Surendra Raj Pathak

Why is the need for finding flood level elevations?

- To find out water surface elevations at different flood frequencies.
- To find out design water level to safeguard all costly engineering structures from flood damage which is probable sometime in future.
- To fix the tailwater elevation. As head (energy) relates to increase in revenue in hydroelectricity, small increment in head has a huge impact in overall project financial health in a long run. Earthwork excavation incurs huge part of powerhouse cost initially. There has to be optimized tailwater elevation by analyzing between increase in project revenue from head increment vs. initial earthwork excavation cost.

Location of Nepal on Globe

Source: WORLD ATLAS

Major Watersheds in Nepal

Source: Ministry of Energy, Nepal

Physiographic Divisions of Nepal


```
Source: WWF 2005
```

Kabeli "A" Hydroelectic Project Site

Kabeli "A" Hydroelectric Project Watershed Area

Source: Survey Department, Nepal

Kabeli "A" Hydroelectric Project Layout

Source: Survey Department, Nepal

General Project Features

Items	Description			
Project Name	Kabeli-A Hydroelectric Project			
Location	Amarpur and Panchami VDCs of Panchthar District and Nangkholyang of Taplejung District			
Project Boundaries	Licensed Coordinates			
87° 45′ 50″ E	Eastern Boundary			
87° 40′ 55″ E	Western Boundary			
27° 17′ 32″ N	Northern Boundary			
27° 13′ 41″ N	Southern Boundary			
Type of development	Peaking Run-of-the-river (PROR)			
Hydrology				
Catchment area at Intake	864 km ²			
Catchment area at Powerhouse	3930 km ²			
Mean monthly flow in Kabeli	51.75 m³/s			
40 percentile flow from Flow Duration Curve (FDC) in Kabeli River	37.73 m³/s			

General Project Layout Within Licensed Coordinates

Source: Google Earth

Change in Powerhouse Location

11

Catchment Area Characteristics

	Intake Area		Powerhouse Area	
Elevation, masl	Area in	% of total		
	km ²	area	Area in km ²	%
Above 5000	0.5	0.1%	717.0	18.2%
Between 5000 m and 3000 m	177.5	20.5%	1325.0	33.7%
Below 3000 m	686.0	79.4%	1888.0	48.1%
Total catchment area	864.0	100.0%	3930.0	100.0

Newly Proposed Powerhouse Location on right side of Piple Creek (Picture taken during summer season)

Alluvial fan of Piple Creek and its confluence with Tamor River Downstream

Regional Methodologies for Calculating Mean Monthly flows for un-gaged rivers

- HYDEST: developed by Water and Energy Commission Secretariat (WECS) and Department of Hydrology & Metereology (DHM) in 1990. For complete analysis, catchment area and its distribution in altitude are essential along with monsoon wetness index (MWI)
- MHSP (Medium Hydropower Study Project):Nepal Electricity Authority (NEA) in 1997 developed a method to predict long-term flows, flood flows and flow duration curves at ungaged sites through regional regression technique. This approach uses both monsoon wetness index and average precipitation of the area along with catchment area of the river.
- **Catchment correlation:** an attempt was made to correlate the flows of gaged catchment with the ungaged catchment by using cathment area ratio. During the study, it was found that Tamor River at Majhitar (station no 684) has recorded data of 11 years only. Therefore, catchment characteristics of only two stations: station 690 (Tamor River at Mulghat) and station 795 (Kankai Mai at Mainachuli) are compared.

Newly Proposed Powerhouse Location during rainy season (Monsoon)

Mean Monthly Hydrograph for Kabeli River

Extreme Hydrology (Flood Frequency Analysis) for Ungaged Catchment

- Catchment Area Ratio (CAR) Method: The maximum instantaneous flow data of Tamor River at Mulghat (station number 690) is available from the year 1965 to year 2006. Three distribution methods; Lognormal, Log Pearson III and Gumbel distribution methods were used to estimate the flow for different return periods. The Log pearson III method has given the best fit curve, therefore the result given by this method is taken
- **Regression analysis method:** Instantaneous maximum flow data from 15 gaging stations, all lying within Koshi basin was collected and their individual frequency analysis was carried out. Then, regression equations were developed between the catchment area below elevation 3000 m and T-year return period.
- **Regional flood frequency analysis method:** The same 15 gaging stations as mentioned in above method were selected for analysis in this method as well. The frequency analysis of maximum instantaneous floods was carried out for each of the station and regression equation between the mean flood discharge (Q2.33) and the catchment area was developed. The equation used is:

 $Y = 7.792 X^{0.623}$

Newly Proposed Powerhouse Location on Right Side of Piple Creek

What is Glacial Lake Outburst Flood (GLOF)?

A glacial lake outburst flood (GLOF) is a type of outburst flood that occurs when the dam containing a glacial lake fails. The dam can consist of <u>glacier</u> ice or a <u>terminal moraine</u>. Failure can happen due to <u>erosion</u>, a buildup of <u>water pressure</u>, an <u>avalanche</u> of rock or heavy snow, an <u>earthquake</u> or <u>cryoseism</u>, <u>volcanic eruptions</u> under the ice, or if a large enough portion of a glacier breaks off and massively displaces the waters in a glacial lake at its base.

Source:http://en.wikipedia.org/wiki/Glacial_lake_outburst_flood

Glacial Lake Outburst Flood (GLOF) events are likely with high seismic events in Himalayas

Source: http://www.swisseduc.ch/glaciers/glossary/glof-2-en.html

Glacial Lakes in Kabeli Basin

S.N.	Glacial lake/pond	Elevation (m)	Surface area (ha)	Aerial distance from headworks (km)
1	Timbu Pokhari	4330	9.9	35
2	Hadi Pokhari	4220	8.7	36
3	Suke Pokhari	4350	3.0	36
4	Lam Pokhari	4360	3.5	36
5	Chhahare Pokhari	4440	4.8	36

Calculation of flow data for Generating Hydrograph

Adopted mean monthly flow at Kabeli is derived by using gage data of Tamor at Mulghat (Station 690) and applying catchment area ratio (CAR) and precipitation index (PI). A multiplying factor of 0.14 (CAR=0.15 and Precipitation ratio=0.937) was applied in the daily flow of station 690 to derive long term daily flow of Kabeli River at the intake site. Tamor river at Mulghat is mother catchment for Kabeli river. Using CAR and PI, long term daily flow at Kabeli river is derived. The 40% exceedance of flow is 37.73 m3/s from flow duration curve (FDC) as shown in next slide.

Flow Duration Curve for Kabeli River

% Exceedance	Discharge, m3/s
5	54.5
-	
10	143.2
15	131.4
20	111.3
25	90.1
30	72.0
50	72.0
35	48.8
40	37.7
45	27.2
50	23.5
55	19./
60	14.2
00	10.0
65	3.7
70	11.9
90	8.3
95	7.9

Flow Duration Curve for Kabeli River

13 Cross Sections Chosen for Input in Geometry Data for HECRAS Analysis

Input Cross Section of Geometry Data

1			
2	River Station 600 Chainage 0+000		River Station 550 Chainage 0+050
3	Cumulative Distance (m)	Elevation (m)	Cumulative Distance (m) Elevation (m)
4	0	481	0 475
5	1.41	480	2.57 474
6	2.86	479	5 473
7	5.49	478	7.33 472
8	8.91	477	9.67 471
9	11.9	476	17.57 470
10	14.36	475	21.91 469
11	16.32	474	24.4 468
12	18.62	473	28.56 467
13	21.03	472	41.47 466
14	23.36	471	45.8 465
15	25.3	470	65.49 464
16	27.09	469	77.75 463
17	28.88	468	81.3 462
18	30.69	467	84.91 461
19	37.78	466	85.5 461
20	43.59	465	104 459.3
21	61.98	464	120 458.18
22	76.14	463	138 459.3
23	79.59	462	157.7 461
24	82.96	461	158.98 461
25	83.2	461	164.6 462
26	100	459	167.8 463
27	110	458.5	170.08 464
28	120	459	175.33 465
29	138.3	461	179.06 466
30	139.13	461	185.94 471
31	142.09	462	192.82 476
32	144.28	463	

Flow Data for HECRAS Analysis

	At Normal Flow			
River	Kabeli and Tamor	Kabeli and Tamor After adding Q from Powerhouse		
Reach	1	1		
RS	600	100		
Jan	48.75	86.48		
Feb	40.25	77.98		
Mar	39.55	77.28		
Apr	57.90	95.63		
May	127.52	165.25		
June	345.29	383.02		
July	682.56	720.29		
Aug	734.02	771.75		
Sept	512.06	549.79		
Oct	241.09	278.82		
Nov	106.79	144.52		
Dec	68.10	105.83		
2 Years	2212.00	2250.00		
20 Years	4414.00	4452.00		
50 Years	5292.00	5329.00		
100 Years	5984.00	6022.00		
1000 Years	8523.00	8561.00		

Cross Section Profile 30m upstream where tailwater release meets Tamor River

20 and 100 Years Return Period Flood Elevations Under Steady State Analysis Conditions

Rating Curve at first upstream cross section in Powerhouse Area taken for HECRAS analysis

Cross Section Output Table

Cross Section Output	Help	Calebra and	the se				
niver. Nabeli anu i amor	River: Kabeli and Lamor Frotile: 100 Years						
Reach 1	▼ RS:	600 🔽	🗜 🕇 🛛 Plan	: Plan New			
	Plan: Plan Ne	w Kabeliand Tamor 1 RS: 600) Profile: 100 Years	:			
E.G. Elev (m)	472.02	Element	Left OB	Channel	Right OB		
Vel Head (m)	3.18	Wt. n-Val.	0.037	0.035	0.037		
W.S. Elev (m)	468.83	Reach Len. (m)	20.20	50.00	69.60		
Crit W.S. (m)	468.83	Flow Area (m2)	242.50	511.62	70.32		
E.G. Slope (m/m)	0.004785	Area (m2)	242.50	511.62	70.32		
Q Total (m3/s)	5984.00	Flow (m3/s)	1193.34	4453.49	337.17		
Top Width (m)	125.90	Top Width (m)	55.81	55.10	14.99		
Vel Total (m/s)	7.26	Avg. Vel. (m/s)	4.92	8.70	4.79		
Max Chl Dpth (m)	10.33	Hydr. Depth (m)	4.35	9.29	4.69		
Conv. Total (m3/s)	86505.3	Conv. (m3/s)	17251.0	64380.1	4874.2		
Length Wtd. (m)	46.29	Wetted Per. (m)	56.79	55.35	17.12		
Min Ch El (m)	458.50	Shear (N/m2)	200.39	433.73	192.74		
Alpha	1.19	Stream Power (N/m s)	7877.35	0.00	0.00		
Frotn Loss (m)	0.20	Cum Volume (1000 m3)	156.16	352.26	197.87		
C & E Loss (m)	0.24	Cum SA (1000 m2)	39.80	35.09	29.91		
		Errors, Warnings and Notes					
Warning: The energy eq	uation could not be	balanced within the specified numb	per of iterations. The	program used cr	itical depth		
for the water su	urface and continue	d on with the calculations.					
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.							
Warning: The energy los	s was greater than 1	.0 ft (0.3 m), between the current a	and previous cross se	ection. This may	indicate the		
need for addition	need for additional cross sections.						
Warning: During the star	Warning During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated 💦 🖄						
Select River Station							

X-Y-Z Perspective View of 20 and 100 Years Return Period Flood Frequency

Tail water Level Optimization: Optimum Tailwater level comes out as 458.5m

Tailwater Level Optimization

ANY QUESTIONS? THANK YOU