Field-scale Monitoring of Agricultural Ditches as Conduits of Nitrogen, Phosphorus, and Suspended Sediment in Response to Storm Events and Low-Input Drainage Management: A Case-Study of the Tchula Lake Farm

Samuel C. Pierce¹, Robert Kröger¹, Dan Prevost² & Troy Pierce³ ¹ MSU Dept of Wildlife, Fisheries, and Aquaculture ² Delta F.A.R.M. ³ USEPA Gulf of Mexico Program

Causes and Sources of impairment

- Nonpoint source pollutants (NPS)
 - Sediment
 - Nutrients
 - Nitrogen
 - Phosphorus
- In Yazoo Basin % from agriculture (Shields et al., 2008)
 - 93% of the total N load
 - 90% of the total P load

- Left: St. Francis River (protected)
- Right: remains of headwaters of Little River
- Now 5 parallel canals
- In agricultural lowlands there are more "ditches" than "streams"

Questions

- When are NPS leaving the fields?
 - Storm events or baseflow
 - Specifically when during the storm events
 - Month
- Do they differ progressing upstream?
- Structures for lower NPS
 - •In-stream
 - •Edge-of-stream

NPS Monitored

- Concentrations
 - -Total Suspended Solids
 - Turbidity
 - Nitrate
 - -{Nitrate + Nitrite} Nitrite
 - –Total Inorganic Phosphorus
 - -Dissolved Inorganic Phosphorus
- Pre-implementation: Jan-April 2011
- •Post-implementation: Jan-March 10 2012

Sampling methods

- Storm Samples ISCO sampler
 - Triggered by water level
 - First 6 samples at 10-minute intervals
 - Last 18 samples at 1-hour intervals

Sampling methods

Grab samples
– 3 week intervals
– March to November
– 6 week intervals
– December to February

Data Collected

- When?
 - •ISCO samples
 - Differences During storm event
 - •All samples
 - By month
- •How?
 - •Grab
 - •ISCO
 - •Storm
- •Where?
 - •Grab
 - •Storm

•Storm samples •Turbidity p = 0.089

Conclusions

- Ditches are moving large amounts of TIP and sediment in the initial hours of storm events
- Nitrate concentrations show a gradual increase during storms
- NPS patterns are influenced by seasonal and agricultural practices

Future Directions

- Effect of Water Control Structures on Nitrate
- Interpretation in relation to hydrology
- Load calculations
- Soil testing
- Application rates

Acknowledgements

- Koko Roland
- Walter Shelton

- Beth Poganski
- Corrin Flora
- Cory Shoemaker
- Alex Littlejohn
- Jason Brandt

