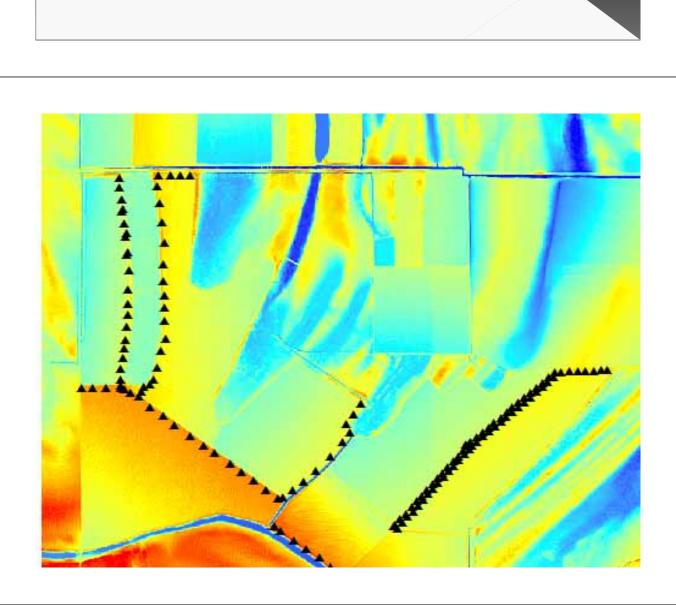
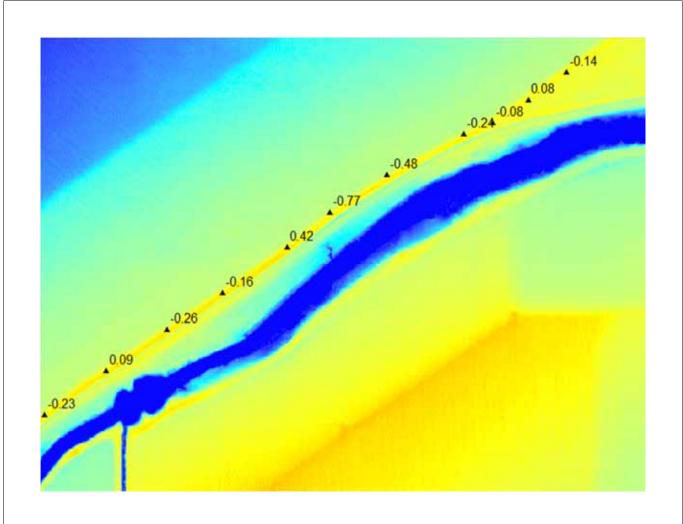


What is Phaucet...

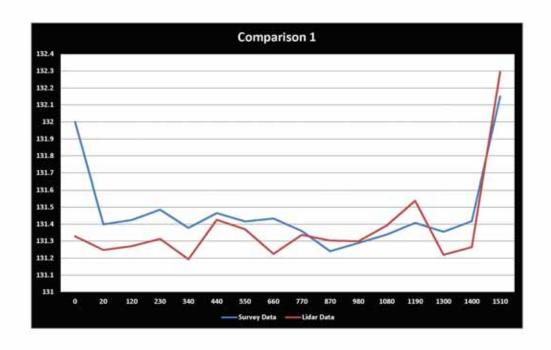
- Uses Feed and Technical Data to help evaluate irrigation systems
- everal variables crown elevations, dimensions
- Leads to more efficient irrigation by suggesting to irrigators what size holes to punch in their poly pipe

The Need for New Tools


is the main hurdle to overcome

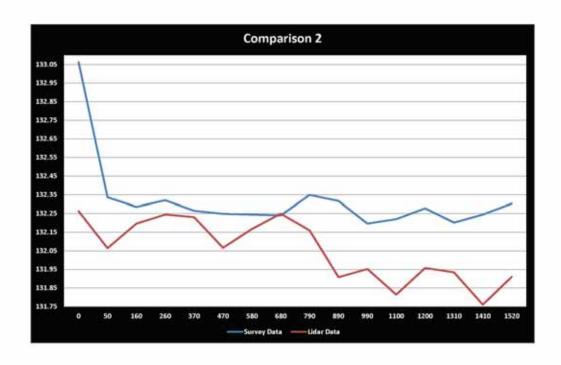

How Rales and Side Slope Determinations are


LIDAR used in place of data gathered with survey equipment



Elevation data for each point was obtained from LIDAR and entered into Phaucet in place of the survey data

Comparison 1: Design Breakdown


Survey Data Design		
No. of holes	Size	
2	7/8	
27	13/16	
76	3/4	
1	11/16	
1	5/8	
1	9/16	
78	1/2	
17	7/16	
15	3/8	
14	5/16	
7	1/4	

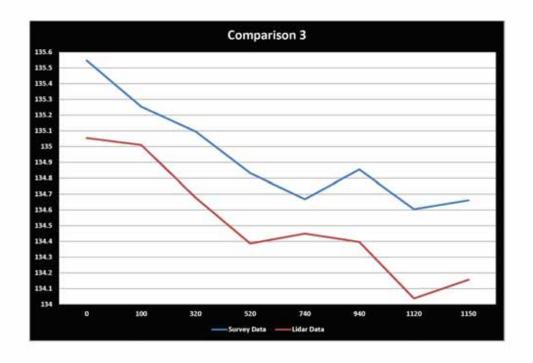
Distribution Uniformity = 94.2
Maximum Head =1.74
Minimum Head = .6
Maximum Head Station = 25
Average Furrow Flow = 5.8 gpn

LIDAR Data Design		
No. of Holes	Size	
29	13/16	
40	11/16	
5	3/4	
31	11/16	
1	5/8	
1	9/16	
79	1/2	
14	7/16	
15	3/8	
16	5/16	
8	1/4	

Distribution Uniformity = 91.9	
Maximum Head = 2.05	
Minimum Head = .62	
Maximum Head Station = 19	
Average Furrow Flow = 5.8 gpm	

<u>Design evaluation</u>: Both designs call for similar hole sizes down the length of the pipe. Both keep head pressures within acceptable levels. Distribution uniformity for both designs is acceptable. Both are valid designs.

Comparison 2: Design Breakdown

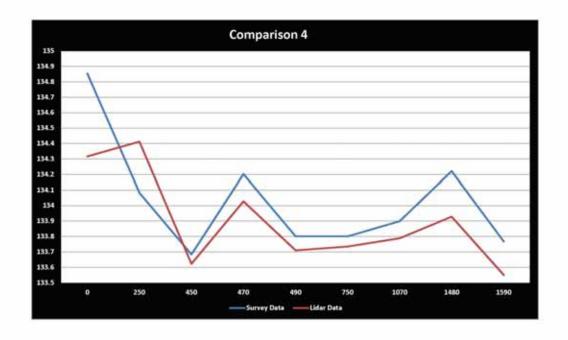

Survey Data Design	
No. of Holes	Size
5	5/8
51	9/16
106	5/8
9	9/16
15	1/2
13	7/16
12	3/8
9	5/16
8	1/4
3	3/16

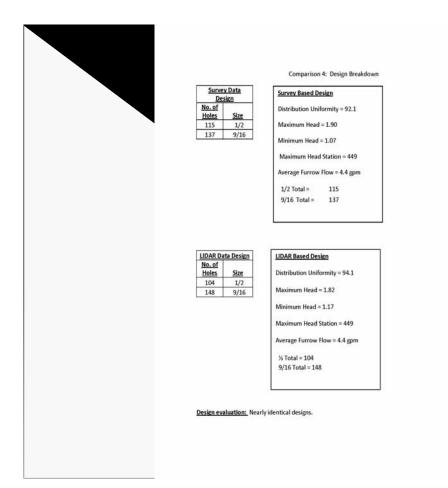
Survey Based De	esign	
Distribution Unit	formity = 90.6	
Maximum Head	=2.43	
Minimum Head	= 1.77	
Maximum Head	Station = 51	
Average Furrow	Flow = 5.7 gpm	
5/8 Total =	111	
9/16 Total =	70	

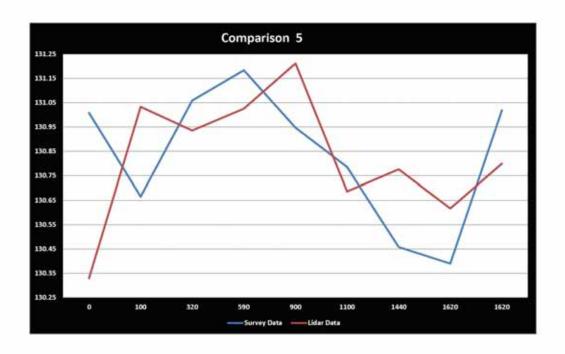
LIDAR Data Design	
No. of Holes	Size
19	9/16
145	5/8
17	9/16
16	1/2
13	7/16
11	3/8
9	5/16
8	1/4
3	3/16

LIDAR Based De	sign
Distribution Uni	formity = 92.9
Maximum Head	= 2.35
Minimum Head	= 1.68
Maximum Head	Station = 51
Average Furrow	Flow = 5.7 gpm
5/8 Total =	145
9/16 Total =	36

<u>Design evaluation:</u> Designs are similar and valid. Slight variations in elevations led to a slightly different arrangement of hole sizes. Note both designs recognize station 51 as the Maximum Head Station.


Comparison 3: Design Breakdown


	y Data sign	Survey Based Design
No. Of Holes	Size	Distribution Uniformity = 93.7
64	11/16	Maximum Head = 2.19
118	5/8	Minimum Head = 1.76
		Maximum Head Station = 1120
		ACTIVITY OF THE CONTRACTOR OF
		Average Furrow Flow = 7.6 gpm
		Average Furrow Flow = 7.6 gpm 11/16 Total = 64


No. of Holes	Size
77	11/16
23	5/8
35	11/16
47	5/8

LIDA	R Based Design
Distr	ibution Uniformity = 90.6
Maxi	imum Head = 2.17
Mini	mum Head = 1.61
Maxi	mum Head Station = 1120
Aver	age Furrow Flow = 7.6 gpm
Tot	al 11/16 = 112
Tot	al 5/8 = 70

<u>Design evaluation:</u> Designs are similar and valid. Slight variations in elevations led to a slightly different arrangement of hole sizes. Note both designs recognize station 1120 as the Maximum Head Station.

Comparison 5: Design Breakdown

Survey Data Design	
No. of Holes	Size
32	5/8
41	11/16
155	3/4
29	11/16
6	3/4
1	13/16

Survey Based Design
Distribution Uniformity = 94.5
Maximum Head = 2.57
Minimum Head = .90
Maximum Head Station = 95
Average Furrow Flow = 7.8 gpm
Total 5/8 = 32
Total 11/16= 70
Total 3/4= 161

	<u>R Data</u> sign
No. of Holes	Size
14	5/8
56	11/16
44	3/4
49	13/16
61	3/4
6	13/16
33	3/4
1	13/16

LIDAR Based Design
Distribution Uniformity = 93.9
Maximum Head = 3.06
Minimum Head = .73
Maximum Head Station = 0
Average Furrow Flow = 7.8 gpm
Total 5/8 = 14
Total 11/16 = 56
Total 3/4 = 138
total 13/16= 56

Design Evaluations: Similar designs. LIDAR based design shows as higher risk of pipe rupture; its highest head pressure is just over the highest acceptable level of 3.0.

Conclusions

- LIDAR derived data is adequate for Phaucet design
- Potential time saving by using elevations generated from LIDAR Data are great
- There is a need to create a user friendly web based elevation tool for irrigators to access

