

A Holistic Assessment of the Occurrence of Metolachlor and 2 of its Degradates Across Various Environmental Compartments in 7 Environmental Settings

> Claire E. Rose ¹ Heather L. Welch ¹ Richard H. Coupe ¹ Paul D. Capel ²

¹ U.S. Geological Survey Mississippi Water Science Center 308 S. Airport Road Jackson, Mississippi 39208 ² U.S. Geological Survey
122 Civil Engineering Building
500 Pillsbury Drive SE
Minneapolis, MN 554455

U.S. Department of the Interior U.S. Geological Survey

Purpose of Study

- Present metolachlor detections in 7 agricultural watersheds across the U.S.
- Present estimated mass balance of metolachlor in the environment
- Follow one study area's flowpath from metolachlor application to it's appearance in each of the environmental compartments
- Explain the differences in metolachlor and degradate detections based on the hydrology of each site, and highlight similarities, which are based on the chemical and its travel time in the environment

Metolachlor Use in the USA: 2009

Environmental Degradation of Metolachlor to MESA and MOXA

MOXA: metolachlor oxanilic acid

MESA: metolachlor ethanesulfonic acid

Primary degradate pathway: **biotic**

Estimated Values from the Best Fit of Environmental Observations

	Soil half-life	
	(days)	
Metolachlor	10 (15-190)	
MESA	70 ()	
ΜΟΧΑ	50 ()	

Fate and Movement of Metolachlor in the Environment

General "Mass Balance" of Metolachlor (Parent)

State	Use	Rain	٥V	TD	SW	VZ	GW/SW	GW
NE	28	-						_
MD	67							
CA	3							
IN	64							
WA	1							
MS	19							
IA	25							
Use (kg/km ²) relative compared to Washington								

MET

Observations from a Focused Recharge

Through July, MESA + MOXA accounts for about 20% of the loss of Metolachlor.

Fate and Movement of Metolachlor in the Environment: Conclusions

≈USGS

- Use of metolachlor results in its movement throughout the environment
- Similarities and differences can be explained by the differing characteristics of the study areas.
- Trends in the mass movement of metolachlor allow for estimation of its movement within each environmental compartment

Questions or Comments?

Study Unit Description Table

	Maryland	Indiana	Nobraska	California	Washington	Mississioni	lowa
Drainage Basin	Morgan Creek Basin	Sugar Creek Basin	Maple Creek Basin	Lower Merced River Basin	Granger Drain Basin	Bogue Phalia Basin	South Fork Iowa River Basin
Intermediate stream	-	Sugar Creek	Mapel Creek	Lower Merced River Basin	Granger Drain	Bogue Phalia	South Fork Iowa River
Subbasin area (km²)		240	955	831	160	1250	570
Mean annual discharge (m ³ /s)		2.9	2.27	19.4	34.4	21.3	0.5
Percent agriculture (%)		75	95	55	52	>80	>95
Small stream	Morgan Creek	Leary-Weber Ditch	Un-named	Mustang Creek	DR2		
Subbasin area (km²)	31	7.2	1.5	17.5	5.5		
Mean annual discharge (m ³ /s)	0.31, Continuous	0.9, Intermittent	~0.001, Intermittent	~0.01, Intermittent	4.93, Continuous		
Percent agriculture (%)	74	97	97	90	89		
Primary crops-	Corn, soybeans, small grain (60%) Pasture, hay (13%) Nursery, orchard (1.5%)	Corn (50%) Soybeans (50%)	Corn (50%) Soybeans (50%)	Almonds (45%) Vineyards (12%) Corn, grain (16%)	Corn, grain (42%) Grapes, juice (17%) Pasture (11%)	Corn (%) Soybeans (%) Rice (%)	Corn (%) Soybeans (%)
	Animal operations (0.3%)					Cotton (%)	
Average annual precipitation (cm)	112	100	72.3	33	17.6	137	83
Climate	Humid-subtropical	Moderate	Humid-continental	Arid to semi-arid	Hot, dry summers; cold winters	Moderate	Moderate
Irrigation Source	Intrabasin ground wtaer	None	Deep ground water	Deep ground water and interbasin canal	Interbasin canal	Intrabasin ground water	Intrabasin ground water
Irrigated agriculture (%)	10	0	30	>95	>95	-	-
Irrigation method Water capacity	Center pivot	None High	Center Pivot	Sprinkler, drip -	Rill, sprinkler, drip High	Pipe, center pivot, flood Low to moderately high	High
Soil permeability	Moderate	Moderate to low	Low	High to moderate	Moderate to low	Low	Moderate to low
Soil type	Coarse sand and fine silt loam	Silt loam with clay	eolian sand, silt, fine- grained loess	Silt loam, sandy loam, hardpan	Eolian sand, loess, lake sediment	Silt loam, clayey silts	Till with sand and gravel
Artificially enhanced soil drainage? Tillage	No Conservative, no-till	Yes Tillage is practiced	No -	No -	Yes -	Yes Some tillage	Yes -
Local ground-water system	Intermediate:-	Intermediate: In some locations	Intermediate: Yes	Intermediate: Yes	Intermediate: Yes	Intermediate: Yes	Intermediate: Yes
connectioin to regional ground- water system	Small: Yes	Small: Yes	Small: No	Small: No	Small: Yes	Small:-	Small:-

Percentages are based on total agricultural land in the intermediate subbasin, except for Maryland Modified from Capel et al. 2008.

≊USGS

Abstract

The widely used herbicide, metolachlor, is one of the most frequently detected pesticides in surface water and groundwater throughout the United States in both agricultural and urban settings. Metolachlor has also been detected in rain and in the unsaturated zone. The U.S. Geological Survey conducted a study to assess the controlling factors in the transport and fate of metolachlor and its degradates across seven watersheds in California, Indiana, Iowa, Maryland, Mississippi, Nebraska, and Washington during 1997-2007. The occurrence of metolachlor and two degradates (metolachlor ethane-sulfonic acid and metolachlor oxanilic acid) was examined in several environmental compartments within these environmental settings; groundwater, surface water, overland flow, subsurface drains, the unsaturated zone, and the atmosphere. Within these environmental compartments, the occurrence of metolachlor and its degradates primarily is affected by a number of factors including use, management, environmental setting, and physical and chemical properties of metolachlor and its degradates. The fate of metolachlor can be generalized by the environmental compartments. The majority (90%) of metolachlor is taken up by plants, degraded in the soil, or is trapped in/adsorbed to soil. About 10% of the applied metolachlor is volatilized into the atmosphere, and about 0.3% returns by rainfall. Some (0.4%) metolachlor is transported to surface water, Generally, groundwater stores less than 0.02% and does not serve as a metolachlor source to receiving surface waters.

Concerns : Pesticides in the Environment

- Where does it go? / How far does it travel?
- Does it degrade?
- At what concentration is it detected?
- Does it reach drinking water?
- Does it affect animals?
- Does it harm ecosystems?
- How can we prevent offsite movement?

Fate of pesticides in the environment. University of MO Extension

≊USGS

Metolachlor and Glyphosate Use

- GM Crops replaced some metolachlor acreage
- Reformulatio n of Smetolachlor decreased needed usage by ~35%

