Downstream Water Quality and Quantity Impacts Of Water Storage Systems in a Mississippi Delta Watershed

Mary Love M. Tagert, Joel O. Paz, Jonathan W. Pote, and Richard L. Kirmeyer Mississippi State University

2012 Mississippi Water Resources Conference Jackson, MS • April 3-4

Overview

> Background
> Introduction
> Methods
> Preliminary Results
> Long-term Goals

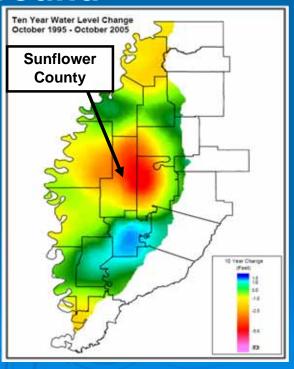
Background

- The MS River Basin contains about 65% of the nation's harvested cropland (Kolpin, 2000).
- The Mississippi and Atchafalaya Rivers contribute over 85% of the total nutrient load to the Gulf (Dunn, 1996).
- In 2010, the hypoxic zone in the northern Gulf of Mexico was one of the largest recorded since a team of researchers began routine mapping of the Gulf in 1985 (Rabalais and Turner, 2010).

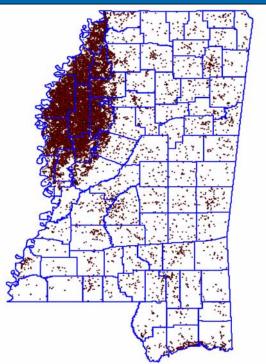
Background

- The size of the Gulf hypoxic zone in 2010 covered 20,000 km², far from the 2015 goal of 5,000 km², set by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (Rabalais and Turner, 2010).
- In 2010, the NRCS launched the Mississippi River Basin Healthy Watersheds Initiative......

Background


Background

Tailwater Storage Pond


Background

Since the 1970's, groundwater levels in the MS Alluvial Aquifer have decreased (100,000 to 300,000 acrefeet/year) due to an increase in irrigated acres (YMD Water Management Plan, 2006; USDA-NRCS, 1998).

Background

There are currently around 15,786 groundwater permits in the Delta, which are dependent on the MS Alluvial Aquifer (DEQ, YMD).

Motivation

- > Two main impediments to sustainability of agroecosystems in the MS Delta:
 - 1. Declining groundwater levels in the MS Delta Alluvial Aquifer
 - 2. Nutrient loads to the MS River and the Gulf of Mexico
- On-farm water storage systems can potentially address both of these issues concurrently

Introduction

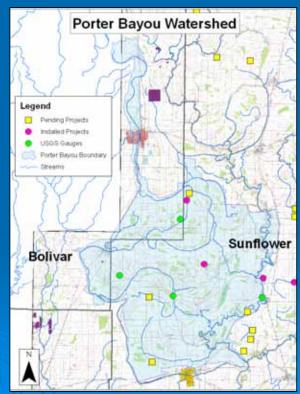
GOAL

Determine the watershed-scale impacts of water storage systems on water quality and quantity, using the example of Porter Bayou Watershed, Mississippi.

Introduction

- OBJECTIVE ONE (Research): Determine the downstream nitrogen and phosphorous concentrations of effluent from water storage systems.
- OBJECTIVE TWO (Research): Quantify the effects of water storage systems on downstream flow levels through a watershed.
- OBJECTIVE THREE (Outreach): Increase the adoption of on-farm water storage technology and dissemination of potential benefits.
- OBJECTIVE FOUR (Education): Enhance the science education of middle and high school students by promoting the benefits of water conservation and environmental stewardship.

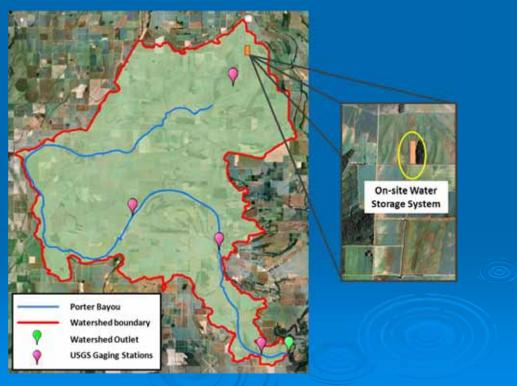
Introduction


- EPA Priority Watershed (HUC 08030207)
- Drains into Big Sunflower River
- > 2008 TMDL report indicated reduction of nutrients could be accomplished with the installation of BMPs (MDEQ).

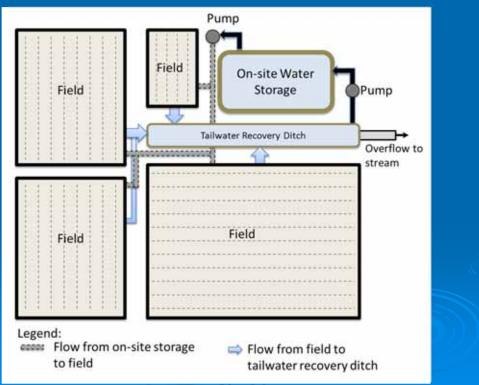
Introduction

 Originally planned on one site – Metcalf/Britt Farm

> Added Pitts Farm



Introduction



- Ratio of 16 acres irrigated area : 1 acre reservoir
- > Reservoir depth is 8 feet
- > TWR ditch at 0.3 ac-ft. per acre, with minimum 10 ac-ft. of storage on any system
- > 4 ft. berm and minimum 6" overflow pipe

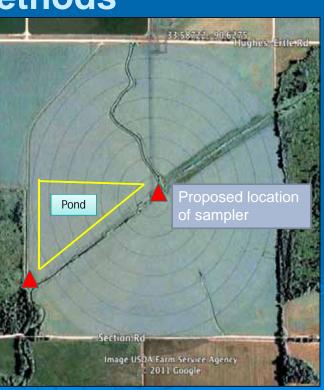
Introduction

Introduction

Methods

- Analyze for pH, conductivity, TSS, total nitrogen, ammonia, nitrite + nitrate, total phosphorus, and orthophosphate.
- Sample every 3 weeks March Oct. and during rainfall events

Methods


- Installed water level sensor in each TWR ditch
- Each site will have a weather station
- Each site will be sampled at inlet(s), in TWR ditch, in reservoir, and at outlet.

Methods

Methods

- Have one year of streamflow data prior to installation of system at Metcalf/Britt site
- At least two additional systems were recently added in headwater area of Porter Bayou
- Lengthy history of record for flow at USGS gauge near watershed outlet
- Changes in streamflow before and after installation of system(s)?
- Cumulative effects on downstream volume as number of operational systems increases?

Preliminary Results Expected Outcomes:

- Level of nutrient reduction that can be achieved by using a water storage system.
- Changes in stream flow patterns caused by the presence of water storage systems in the watershed. Information generated by this research will help assist in the placement of storage reservoirs.
- Farmers and landowners that are better informed of the water quality and quantity benefits of using on-farm storage systems.
- Students that are trained and educated in the area of water quality.

Preliminary Results

Results from February 11, 2012 sampling date

Sample ID	DP-Ortho (mg/L)	TP-Ortho (mg/L)	TP-Org (mg/L)	NH3-N (mg/L)	TKN (mg/L)	TSS (mg/L)	Turbidity (NTU)
LB	0.000	0.000	0.000	0.006	0.000	0.0	0.0
M-Inlet	0.109	0.104	0.167	0.160	4.522	18.5	49.6
M-TWR	ND	0.203	0.238	0.353	3.593	597.5	771.8
M-Pond	ND	0.207	0.301	0.388	1.912	293.0	334.8
M-Outlet	ND	0.053	0.136	0.153	2.335	25.0	65.3
PF-Inlet 1	0.015	0.118	0.189	1.562	5.507	43.0	47.6
PF-Inlet 2	ND	0.091	0.243	0.267	3.474	82.0	81.0
PF-Y	0.088	0.201	0.277	0.489	5.881	61.5	104.3
PF-Pond	ND	0.344	0.466	0.425	9.927	1327.0	1279.8
PF-Outlet	ND	0.045	0.175	0.168	5.157	59.5	62.4

Long-term Goals

- Model watershed effects of on-farm storage systems and use models to target placement (AnnAGNPS, etc.)
- Collaboration with USDA-ARS Sed Lab in Oxford (Drs. Locke and Bingner)
- Continue to pursue funding for optimization and management improvements
- Cost:benefit?, economics?

Partners

- > Mr. Boyer Britt and Mr. Walter Pitts
- > Delta F.A.R.M.

- MS Department of Environmental Quality
- > MS Wildlife Federation
- > USDA-NRCS
- > Yazoo MS Delta Joint Water Management District
- > USDA-NIFA-NIWQ Program

