DEVELOPING RAPID METHODS FOR DATING SEDIMENTS IN MISSISSIPPI USING ICPMS

Final Project Report

By

James Cizdziel

Department of Chemistry & Biochemistry

The University of Mississippi

Submitted to Mississippi Water Resources Research Institute

August 2012

ABSTRACT

Sediment cores from seasonal wetland and open water areas from Oxbow lakes [Beasley (BL), Hampton (HL), Washington (WL), Roundaway (RL), Sky (SL) and Wolf (WL)] in the Mississippi Delta, whose chronology was previously determined by conventional ²¹⁰Pb and ¹³⁷Cs age-dating, were analyzed, for the first time, for Pu isotopes (²³⁹Pu and ²⁴⁰Pu), and Pb isotopes (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²¹⁰Pb). The primarily purpose was to evaluate the feasibility of using ICPMS as an alternative to radiochemical analyses for fallout-Pu and ²¹⁰Pb.

For Pu, the mean ²⁴⁰Pu/²³⁹Pu atom ratio was ~0.177 indicating global fallout as the primary and likely source of the Pu. Analyses of an undisturbed sediment core yielded a Pu peak at a depth which is in good agreement with conventional ¹³⁷Cs and ²¹⁰Pb dating. Analysis of the Washington Lake sediment core yielded a Pu vs. depth profile that was broad and uncharacteristic of normal sedimentation patterns. It was later found out that the conventional dating technique also yielded data scatter indicative of sediment that was likely disturbed *in-situ*. Indeed, because sediment can be mixed by natural events after deposition, this demonstrates that ICPMS can serve as a useful tool to simultaneously identify (screen for) sediments that have been disturbed (eliminating costly ²¹⁰Pb analyses on such cores), and to provide a chronological marker for those that haven't (either alone or in conjunction with conventional dating).

For Pb, total concentrations varied from 1.5 ppm to 12 ppm, with peak levels generally occurring during the 1950's. Isotopic signature plots suggest "natural" Pb (from soil) as the primary source of the lead, with coal and gasoline as slight contributors; however, more study is needed to confirm this. Accurately measuring the ²¹⁰Pb isotope by ICPMS was problematic. The levels were low and subject to interference from stable isotopes of Pb, possibly by the tail of the large ²⁰⁸Pb peak and/or from polyatomic interference such as ²⁰⁸Pb¹H¹H. To overcome these barriers, it is recommended to boost the sensitivity, possibly with a jet-face interface, and/or remove the interference using collision cell technology.

Information transfer: Publications resulting from this work include a paper in the 2012 Mississippi Water Resource Conference Proceedings. This work also contributed toward a Master's thesis by Ms. Pragya Chakravarty titled "Elemental and Isotopic Analysis of Sediments from Oxbow Lakes in the Mississippi Delta" (University of Mississippi, 2012). The current report contains elements from each of those reports.

ACKNOWLEDGEMENTS

The bulk of this work was performed by my graduate student, Ms. Pragya Chakravarty. I am in appreciation of her hard work. I would also like to thank Dr. Gregg R. Davidson (Geology Department) and Dr. Daniel G. Wren (National Sedimentation Laboratory, Oxford, MS) who supplied the Oxbow lake cores and the conventional dating results. I am grateful to the Mississippi Water Resources Research Institute, USGS, Weyerhaeuser and the UM Department of Chemistry for financial support.

ABSTRACTii
ACKNOWLEDGEMENTS iii
LIST OF TABLESv
LIST OF FIGURES vi
BACKGROUND AND PURPOSE OF STUDY2
SAMPLE SITES, SAMPLING, SAMPLE PREPARATION AND SEDIMENT CHRONOLOGY
PLUTONIUM7
INTRODUCTION7
OBJECTIVES
METHODS
PLUTONIUM EXTRACTION, ISOLATION AND CONCENTRATION8
MEASURING PLUTONIUM ISOTOPES BY ICPMS13
RESULTS AND DISCUSSION
LEAD
INTRODUCTION
LEAD IN SEDIMENTS
AGE-DATING OF SEDIMENTS USING ²¹⁰ Pb
OBJECTIVES
METHODS
SAMPLE PREPARATION FOR TOTAL Pb ANALYSIS19
SAMPLE PREPARATION FOR LEAD ISOTOPE (²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²¹⁰ Pb) ANALYSIS
ICPMS Analysis24
RESULTS AND DISCUSSION24
Total-Pb:24
LEAD ISOTOPES:
²¹⁰ Pb:
SIGNIFCANT FINDINGS AND RECOMMENDATIONS 29
LITERATURE CITED
APPENDIX

TABLE OF CONTENTS

LIST OF TABLES

Table 1.Sample Information	3
Table 2. Operating Conditions of the SF-ICP-MS	4
Table 3. Pu Summary table for Beasley Lake	5
Table 4. Operating Conditions of the SF-ICP-MS	:4
Table 5. Mean Pb levels and Pb Isotopic compositions in Washington and Hampton Lakes 2	:5
Table 6. Pu concentration, ²⁴⁰ Pu/ ²³⁹ Pu ratio and ²³⁹⁺²⁴⁰ Pu activity for Roundaway Lake	2
Table 7. Pu concentration, 240 Pu/ 239 Pu ratio and $^{239+240}$ Pu activity for Washington Lake	52
Table 8. Pb concentration and Isotopic Pb signatures for WL1A	3
Table 9. Pb concentration and Isotopic Pb signatures for WL2. 3	3
Table 10. Pb concentration and Isotopic Pb signatures for HL2A 3	64

LIST OF FIGURES

FIGURE 1. LOCATIONS OF OXBOW LAKES IN THIS STUDY [ADAPTED FROM REF. 2]4
FIGURE 2. SKY LAKE WATERSHED SHOWN IN DASHED LINES. 1MM CORES WERE SAMPLED FROM
MIDDLE CIRCLE [ADAPTED FROM REF. 1]5
FIGURE 3. CORE LOCATION SHOWN FOR HAMPTON LAKE [3]6
FIGURE 4. SKY LAKE SEDIMENT CORE (SL5) BEING SLICED INTO 1CM INTERVALS AT THE
NATIONAL SEDIMENTATION LABORATORY6
FIGURE 5. EXAMPLE OF USE OF PU FOR AGE-DATING SEDIMENTS. DEPTH VS. ²³⁹⁺²⁴⁰ PU ACTIVITY
(BQ/G) IN ANDREW LAKE SEDIMENTS [7]7
FIGURE 6. TEVA RESIN QUARTERNARY AMMONIUM SALT [8]9
FIGURE 7. TEVA RESIN ELUTION PROFILES IN HNO3 AND HCL SOLUTIONS [8]10
FIGURE 8. SAMPLE PREPARATION FOR PU ANALYSIS
FIGURE 9. COLUMN CHEMISTRY FOR PU ISOTOPE SEPARATION12
FIGURE 10. SCHEMATIC OF SECTOR FIELD INDUCTIVELY COUPLED PLASMA MASS
SPECTROMETRY [10]13
FIGURE 11. DEPTH VS. ²³⁹⁺²⁴⁰ PU ACTIVITY FOR BEASLEY LAKE
FIGURE 12. DEPTH VS. ²³⁹⁺²⁴⁰ PU ACTIVITY FOR WASHINGTON LAKE
FIGURE 13. DEPTH VS. ²³⁹⁺²⁴⁰ PU ACTIVITY (BQ/KG) FOR ROUNDAWAY LAKE
FIGURE 14. PLOT OF ²¹⁰ PB ACTIVITY (DPM/G) VS. DEPTH IN ABSENCE OF AN EROSION CONTROL
MEASURE. HIGHER ACTIVITY IS SEEN AT LOWER DEPTHS MEANING MORE SEDIMENTATION
[13]
FIGURE 15. PLOT OF ²¹⁰ PB ACTIVITY VS. DEPTH AFTER AN EROSION CONTROL STRUCTURE IS
INTRODUCED [13]18
FIGURE 16. UPWARD DIFFUSION OF ²²² RN AND SUBSEQUENT DEPOSITION OF ²¹⁰ PB (EXCESS) ON
THE SEDIMENT SURFACE [7]18
FIGURE 17. SAMPLE PREPARATION FOR PB ANALYSIS

FIGURE 18. COLUMN CHEMISTRY FOR PB ISOTOPE SEPARATION.	21
FIGURE 19. 4,4"(5)-DI-T-BUTYLCYCLOHEXANO 18-CROWN-6 IN ISODECANOL [24]	22
FIGURE 20. NITRIC ACID DEPENDANCY OF SELECTED MONOVALENT METALS ON PB RESIN [24].	23
FIGURE 21. NITRIC ACID DEPENDANCY OF SELECTED DIVALENT METALS ON PB RESIN [24]	23
FIGURE 22. DEPOSITION DATE VS. PB CONC. IN HAMPTON LAKE	25
FIGURE 23. AN EXAMPLE OF TWO COMPONENT MIXING DIAGRAM [7]	26
FIGURE 24. ²⁰⁸ PB/ ²⁰⁶ PB VS. ²⁰⁷ PB/ ²⁰⁶ PB MIXING DIAGRAM FOR SEDIMENTS FROM HAMPTON AND	
WASHINGTON LAKES [11]	27
FIGURE 25. ²¹⁰ PB COUNTS AND TOTAL-PB CONCENTRATION VERSUS DEPTH (X AXIS)	28

BACKGROUND AND PURPOSE OF STUDY

Sediments are complex deposits of inorganic and organic matter that can serve as a natural storage system for metals and anthropogenic contaminants. Because sediment cores can go back decades and even centuries, they are useful as environmental proxies providing a window on the past. Chronology of recent sediments (<100 years since deposition) is traditionally determined using ²¹⁰Pb and/or "bomb-pulse" isotopes, such as ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu. These isotopes are commonly determined by radiochemical techniques, a process that is tedious and requires long analysis (count) times.

Sediment cores were collected from seasonal wetland (W) and open water (OW) areas from Oxbow lakes [Beasley (BL), Hampton (HL), Washington (WL), Roundaway (RL), Sky (SL) and Wolf (WL)] in the Mississippi Delta as part of previous studies by Dr. Davidson (UM Geology Department) and Dr. Wren (National Sedimentation Laboratory) [1, 2]. The core chronology was determined by conventional ²¹⁰Pb and ¹³⁷Cs age-dating and a number of trace elements were determined. Subsequently the dried sediment samples were archived in plastic bags and stored in boxes at room temperature.

In this study, these well-characterized sediment samples were, for the first time, analyzed for Pu isotopes (²³⁹Pu and ²⁴⁰Pu), and Pb isotopes (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²¹⁰Pb). The purpose was to: 1) assess temporal and spatial patterns of metal deposition in the region, and 2) evaluate the feasibility of using ICPMS for dating recent sediment by measuring fallout-Pu and ²¹⁰Pb in sediment profiles and comparing with conventional radiochemical dating methods. Specific objectives for each part of the study are given in their respective chapters. I am very grateful to our collaborators to have been given these sediment samples for this study.

SAMPLE SITES, SAMPLING, SAMPLE PREPARATION AND SEDIMENT CHRONOLOGY

Sediment cores were collected as a part of previous investigations by Dr. Davidson (UM Geology Department) and Dr. Wren (National Sedimentation Laboratory) [1, 2]. Detailed information on sample sites, sampling, sample preparation and sediment chronology are available from prior reports [1,2]. Briefly, cores were sampled using a vibracorer from both open water and wetland areas within six different Oxbow Lakes (Roundaway, Washington, Beasley, Wolf, Sky and Hampton) in the Mississippi Delta (Figures 1-3). Core identity, total watershed area, surface area, GPS specifications, core locations and maximum depth of the cores from six Oxbow Lakes are presented in Table 1. Plastic core pipes were inserted in the vibracorer before sampling. To account for compaction core depths were normalized to mean water content by the NSL. All lakes were sampled in 2009, except Wolf Lake and Sky Lake which were sampled in 2010 and 2006, respectively. The cores were stored at 4°C until processing. Cores were extruded soon after collection (within weeks) (except Sky Lake, which

was extruded in Sept. 2011) and sliced (figure 4) into 1cm (approx.) thick intervals, dried at 60°C in the oven, crushed and sieved through mesh of 1mm pore size. Once sieved the cores were stored at room temperature in labeled plastic bags. The cores were dated using both ²¹⁰Pb and ¹³⁷Cs analyses using conventional radioanalytical techniques as described elsewhere.

Lake	Latitude (N)	Longitude (W)	Surface Area (Ha)	Watershed Area (Ha)	Sample ID	Core Location	Maximum Depth (cm)
Beasley	33.2408°	90.4032°	25	915	BL1A	Open Water	97
	33.2408	90.4032	25 915		BL2	Wetland	58
Hampton	umpton 33.8436° 90.2353° NA NA		HL2A	Open Water	333		
			NA	HL9	Wetland	134	
Washington	33.0253°	253° 91.0246°	1260	10.005	LW1A	Open Water	126
	55.0255°	91.0240°	1200	10,995	LW2	Wetland	211
Sky	33.2888°	90.4985°	NA	1860	SL5	Open Water	136
Wolf	32.5563°	90.2799°	450	11,750	WF1	Wetland	126
Roundaway	34.0125°	90.3574°	21	1254	RL1B	Wetland	71

Table 1.Sample Information

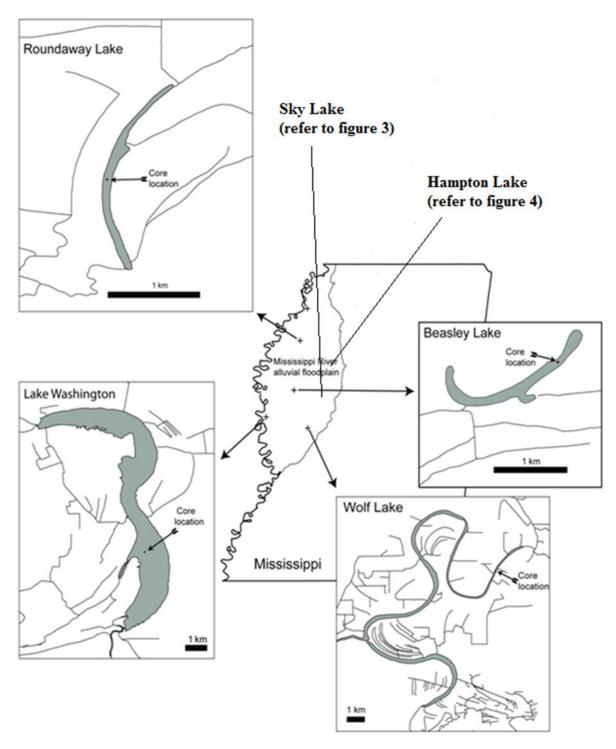


Figure 1. Locations of Oxbow Lakes in this study [adapted with permission from ref. 2]

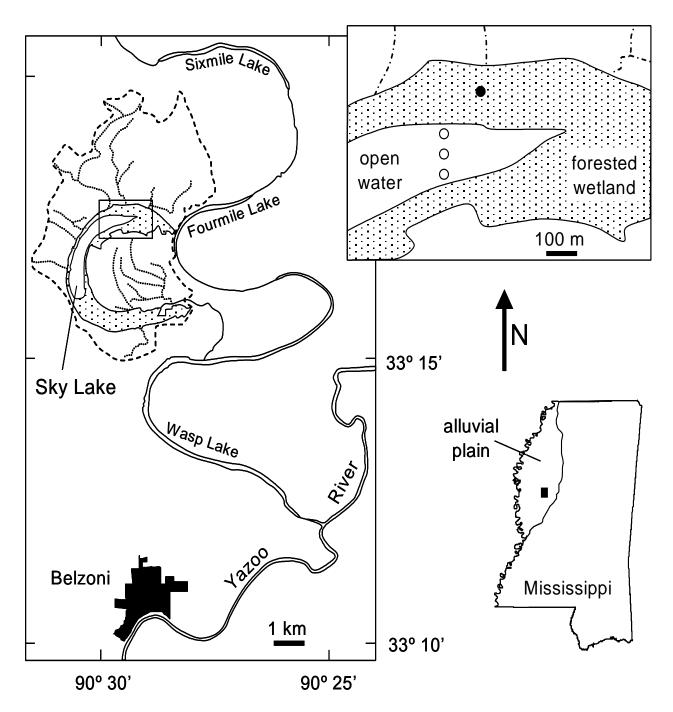


Figure 2. Sky Lake watershed shown in dashed lines. 1mm cores were sampled from middle circle [ref. 1].

Figure 3. Core Location shown for Hampton Lake [3]

Figure 4. Sky Lake sediment core (SL5) being sliced into 1cm intervals at the National Sedimentation Laboratory.

PLUTONIUM

INTRODUCTION

Artificial radionuclides like ²³⁹Pu and ²⁴⁰Pu are introduced into the environment due to accidental releases from the nuclear power plants and testing of nuclear weapons. ²³⁹Pu and ²⁴⁰Pu are the most abundant isotopes of plutonium [4]. Their fallout records are preserved in the sediment and they are used to determine chronology for sediments; peak concentrations in sediments correspond to the year 1963 [5]. Years since 1963 divided by the depth yields average sedimentation rate (figure 5). The stratospheric fallout ratio is ²⁴⁰Pu/²³⁹Pu = 0.180 ± 0.014 and the Nevada Test Site fallout ratio is ²⁴⁰Pu/²³⁹Pu = 0.03 ± 0.07. Using these ratios one can decipher the source of fallout in a region.

Conventionally, radiometric analyses of ²³⁹Pu and ²⁴⁰Pu have been performed by alpha spectrometry. Alpha spectrometry is destructive, requires the use of large sample volumes and involves a lot of sample preparation. Further, alpha spectrometry cannot categorize ²³⁹Pu and ²⁴⁰Pu separately due to small difference in their alpha particle energies [6]. A potential alternative to using radiochemistry is the use of mass spectrometry. ICPMS has a number of advantages for long-lived radionuclides because it counts atoms instead of decays. It is suitable for routine analysis of large number of samples and can measure isotope ratios.

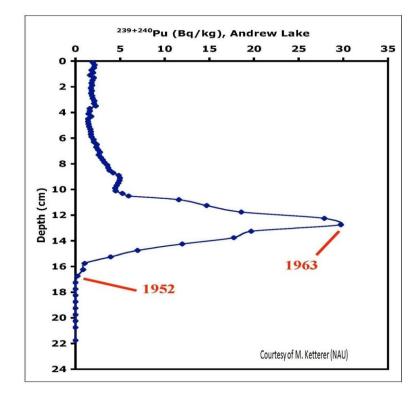


Figure 5. Example of use of Pu for age-dating sediments. Depth vs. ²³⁹⁺²⁴⁰Pu activity (Bq/g) in Andrew Lake sediments [7].

OBJECTIVES

- To transfer and optimize analytical protocols to measure "fallout" plutonium (Pu) in sediments using Sector Field ICPMS.
- Use ICPMS to measure Pu activity and atom ratios in sediment cores from Oxbow Lakes in the Mississippi Delta to age-date the sediment.
- Compare sediment core age-dating results for Pu with that for conventional radioanalytical analysis of ¹³⁷Cs and ²¹⁰Pb.
- Determine the source(s) of Pu in the sediment using Pu isotopic signatures.

METHODS

PLUTONIUM EXTRACTION, ISOLATION AND CONCENTRATION

Sediment core samples from Washington Lake (WL1A) and Beasley Lake (BL1A) were analyzed for ²³⁹Pu, ²⁴⁰Pu and ²⁴²Pu isotopes. The sample weights used for BL1A and WL1A cores ranged from 1.7 to 2.5 grams and 4.5 to 5 grams respectively. The samples were weighed into a 20ml glass vial and dry ashed at 600°C for 6 hours to remove organic matter. 50 pg of ²⁴²Pu (NIST 4334g) was added as a spike for isotope dilution analysis. Five milliliters of 16M HNO₃ was added and the mixture was leached at 80°C for 16 hours. The samples were filtered using vacuum filtration and filters of mesh size 0.45 microns. The filters were rinsed with 15ml of de - ionized water and the rinsing solution was combined with the filtrate. Twenty milligrams of ascorbic acid were added to the solution for the conversion of all the Pu (III) to Pu (IV). The solution is kept as such for 1 hour for the complete conversion of Pu (III) to Pu (IV). The molarity of this solution is 4. TEVA Resin columns were prepared using 5ml pipettes and TEVA Resin powder. The narrow end of the 5ml pipettes were clogged with glass wool and 0.1 - 0.2gm TEVA Resin powder was added. The columns were conditioned by passing 5ml of 4M HNO₃. 5ml of the sample solution were flushed through the column. During this step, Pu (IV) along with Np, Th and U is retained within the columns and other matrix elements are discarded. The columns were rinsed with 3ml of 4M HNO₃ and 5ml of 1M HNO₃. The left over sample solution was loaded into the column in 5ml aliquots each time followed by rinsing with 3ml of HNO₃ and 5ml of 1M HNO₃. The rinse step with 1M HNO₃ allows wash out of the majority of the U from the column. A final rinse of the column with 20 ml of 9M HCl was performed to wash out Th. Pu was eluted using 10ml of 0.02M HCl.

COLUMN CHEMISTRY

The functional group in the TEVA Resin that extracts Pu from sample solutions is a quarternary ammonium salt (figure 6) [8].

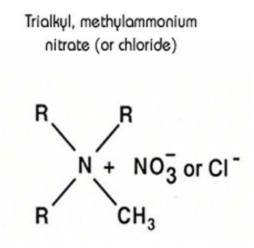


Figure 6. TEVA Resin Quarternary Ammonium Salt [8]

The assumed extraction equilibrium is as follows [8]:

$$Pu^{4+} + 4NO_3^- + 2\overline{E \cdot NO_3} \Leftrightarrow E_2^+ \cdot Pu(NO_3)_6^{2-}$$

(Th⁴⁺, Np⁴⁺)
with E = extractant

In aqueous solutions, Pu can exist in Pu(III), Pu(IV), Pu(V), Pu(VI) and Pu(VII) oxidation states simultaneously [9]. Pu(III) and Pu(IV) are in general believed to be relatively insoluble in solutions compared to Pu(V) and Pu(VI) which are considered to be more soluble [9]. It has been reported that in 7M HNO₃ solution, Pu(IV) can exist as a complex mixture of $Pu(NO_3)^{2+}_{2}$, $Pu(NO_3)_{4}$, and $Pu(NO_3)^{2-}_{6}$ [9].

Figure 7 presents the elution profiles of different radionuclides in HNO_3 and HCl. Pu(IV) shows maximum retention within 2M-4M HNO_3 . In this range U(VI) tends to elute. When the samples are loaded on the TEVA Resin from 4M HNO_3 , Pu(IV) is retained. Th, which can interfere with Pu analysis, maybe eluted with 6M HCl [8].

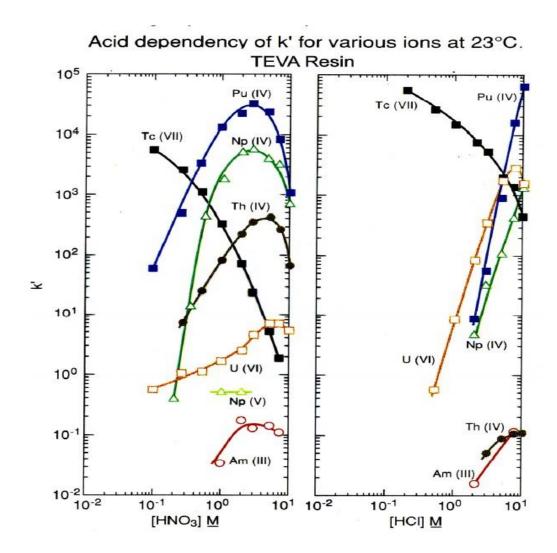
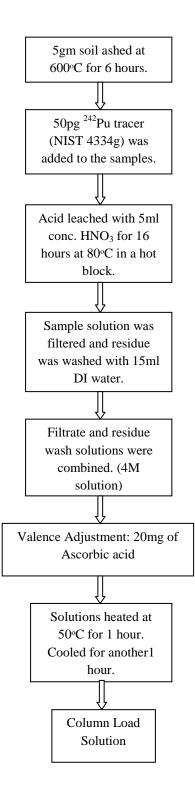
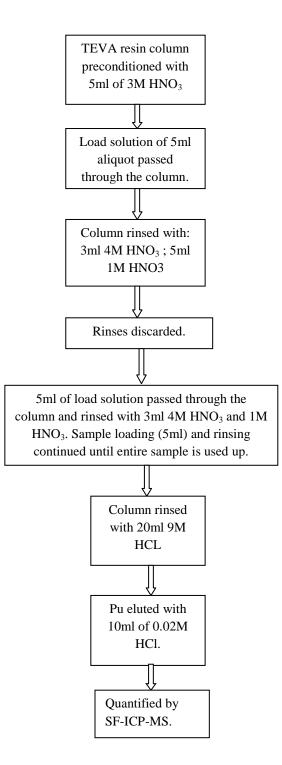




Figure 7. TEVA Resin Elution profiles in HNO₃ and HCl solutions [8].

Figure 8. Sample preparation for Pu analysis.

Figure 9. Column Chemistry for Pu isotope separation

MEASURING PLUTONIUM ISOTOPES BY ICPMS

Sample handling preparation of standards and reagents were performed in clean rooms under laminar flow clean air benches to minimize the risk of contamination. All ICP-MS measurements were carried out using an Element XR (Thermo Fisher), figure 10. For measuring Pu isotopes, a high efficiency sample introduction system APEX desolvation unit was utilized to minimize hydride formation. SF-ICP-MS operating conditions are summarized in table 2. Use of SF-ICP-MS provides good accuracy and precision and detection limits within femtogram levels. The main issues associated with the determination of Pu isotopes are the following:

- a) Formation of ²³⁸U¹H, ²³⁸U¹H¹H that cause interferences with ²³⁹Pu and ²⁴⁰Pu [5].
 b) Tailing effect of ²³⁸U on the ²³⁹Pu signal [6].

Uranium ideally should be removed from the sample solutions during resin treatment and before analysis as resolution of $^{238}U^{1}H$ is not possible using SF-ICP-MS [5].

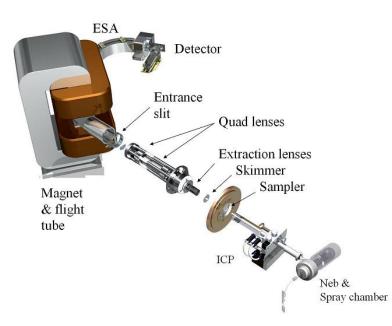


Figure 10. Schematic of Sector Field Inductively Coupled Plasma mass Spectrometry [10].

Parameter		Operating Condition
Forward Power		1450
Cool gas flow rate		16 L/min
Auxiliury gas flow rate		1.0 L/min
Sample gas flow rate		1.2 L/min
Mass Window		20
Scan type		Escan
Integration window		80
Samples/peak	²³⁹ Pu	150
	²⁴⁰ Pu	150
	²⁴² Pu	50
Dwell time	²³⁹ Pu	0.1s
	²⁴⁰ Pu	0.1s
	²⁴² Pu	0.01s

Table 2. Operating Conditions of the SF-ICP-MS.

RESULTS AND DISCUSSION

Table 3 shows the results for the determination of ²³⁹Pu, ²⁴⁰Pu concentration, ²³⁹⁺²⁴⁰Pu activity and ²⁴⁰Pu/²³⁹Pu atom ratio for Beasley lake open water core. ²⁴¹Pu was too low in concentration to accurately measure and will not be reported here. In some cases, concentrations of Pu determined by ICPMS were converted to activities using the specific activity of the isotope. The results for Washington and Roundaway lakes wetland core are presented in tables 8 and 9 (appendix). Of the cores analyzed the Beasley Lake open water core has the best defined chronology [1]. The lake was recently found to show a reduction in sediment accumulation rates due to erosion control and cropping practices [1]. We analyzed sediment samples using both batch (resin beads mixed with the solution) and column methods. Whereas Pu levels were found to be lower in the batch method, trends for both were similar (figure 11). The peak Pu depth was in agreement with peak ¹³⁷Cs depth. Usually these peaks correspond to 1963, the peak year for fallout, but the ²¹⁰Pb dating places them a few years later. It is possible that the recent changes in sedimentation rates affected that determination. In any case, the profiles show Pu peaks in general agreement with the conventional dating methods. A core a greater number of samples (from Sky Lake) was also prepared for analysis with the hope of demonstrating an even better resolved peak profile, however due to instrument repair the samples were not analyzed by the time this report was completed.

²⁴⁰Pu/ ²³⁹Pu atom ratios averaged 0.177, consistent with a global fallout source. The Pu activity profile for Washington and Roundaway Lakes are shown in figures 12 and 13. The data suggests that these sediments were, to some extent, mixed since deposition. This agrees with conventional dating results which also showed data scatter indicative of mixing [1]. Interestingly,

for Washington Lake the peak Pu level occurred at a depth of ~21 cm which is similar to the peak depth for 137 Cs (18 cm, not shown). In retrospect, these wetland cores were not the best choice for testing; but they do show that the method is useful for identifying cores that have uncharacteristic global fallout profiles, which in turn suggests that the core has been mixed and may not be the best choice for costly 210 Pb dating.

Year	Depth(cm)	²³⁹ Pu(pg/g)		²⁴⁰ Pu(pg/g)		²⁴⁰ Pu/ ²³⁹ Pu		²³⁹⁺²⁴⁰ Pu(Bq/kg)	
		column	batch	column	batch	column	batch	column	batch
2003	6	0.94	0.10	0.18	0.02	0.19	0.21	3.65	0.39
1992	16	1.04	0.17	0.18	0.03	0.17	0.18	3.89	0.63
1982	23	1.51	0.13	0.24	0.03	0.16	0.20	5.49	0.50
1971	47	2.72	1.07	0.42	0.25	0.16	0.23	9.82	4.55
1966	60	2.41	0.31	0.46	0.06	0.19	0.21	9.43	1.25
1963	68	0.06	0.06	0.02	0.01	0.25	0.25	0.27	0.24
1953	90	1.69	0.43	0.30	0.09	0.18	0.21	6.43	1.74
Avg		1.48	0.32	0.26	0.07	0.19	0.21	5.57	1.33
SD		0.91	0.36	0.15	0.08	0.03	0.02	3.37	1.52

Table 3. Pu Summary for Beasley Lake.

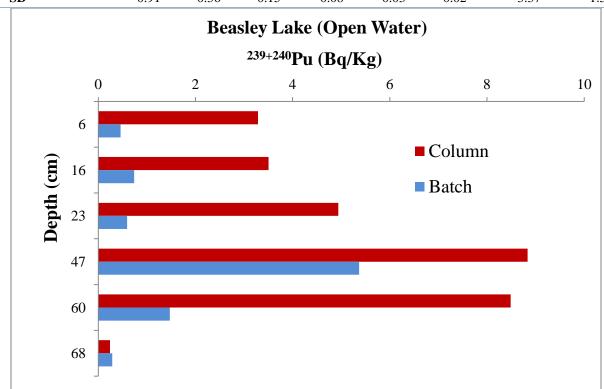


Figure 11. Depth vs. ²³⁹⁺²⁴⁰Pu activity for Beasley Lake

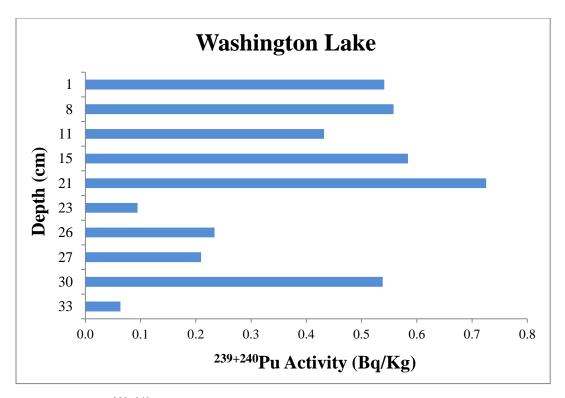


Figure 12. Depth vs. ²³⁹⁺²⁴⁰Pu activity for Washington Lake

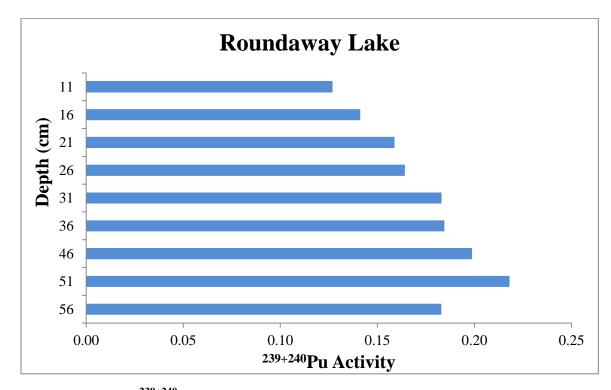


Figure 13. Depth vs. ²³⁹⁺²⁴⁰Pu activity (Bq/kg) for Roundaway Lake

LEAD

INTRODUCTION

LEAD IN SEDIMENTS

Pb has been mined and used by humans for several thousand years [11]. Deposits of Pb have characteristic isotopic composition [11]. Analyzing stable Pb isotopes (206 Pb, 207 Pb and 208 Pb) and identifying the ratios (206 Pb/ 207 Pb and 208 Pb/ 207 Pb) can help in the determination of point sources of Pb contamination. Two well-known sources of Pb contamination are usage of leaded gasoline (~1924 – ~1960) and coal mining [11].

AGE-DATING OF SEDIMENTS USING ²¹⁰Pb

Sediments are dated to determine the spatial and temporal patterns of metal deposition in an area, to determine the effectiveness of erosion control methods (figure 14 and 15), to manage reservoirs more effectively and ultimately to calculate the rates of sediment accumulation. Dating of sediments is done by using natural radio nuclides like ²¹⁰Pb and ¹⁴C and artificial radio nuclides like ¹³⁷Cs, ²³⁹Pu and ²⁴⁰Pu. ²¹⁰Pb is a member of the ²³⁸U decay series. Half life of ²¹⁰Pb is 22 years. The content of 'supported' ²¹⁰Pb in soils is produced by the decay of ²²⁶Ra. ²²²Rn diffuses from the soil surface and decays in the atmosphere (figure 16). This results in the deposition of 'unsupported' or 'excess' ²¹⁰Pb combined with aerosol and moisture on the soil surface. ²¹⁰Pb dating method is based on measuring and comparing the quantities of supported and unsupported ²¹⁰Pb. However there are two major limitations in applying this method. Firstly, mixing or displacement of sediment particles gives erroneous dates and secondly this method does not hold good for sediments more than 100 years old as no excess ²¹⁰Pb can be detected beyond the background level. ²¹⁰Pb decays by emitting beta particles of energy 17 kev and 63.5 kev and gamma rays of energy 46.5kev [12]. The decay products are ²¹⁰Bi and ²¹⁰Po respectively.

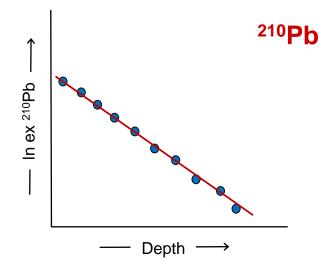


Figure 14. Plot of ²¹⁰Pb activity (dpm/g) vs. depth in absence of an erosion control measure. Higher activity is seen at lower depths meaning more sedimentation [13].

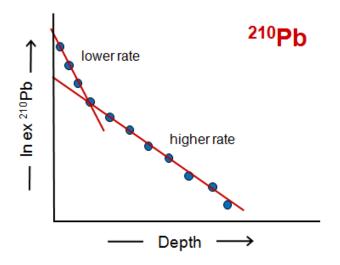


Figure 15. Plot of ²¹⁰Pb activity vs. depth after an erosion control structure is introduced [13].

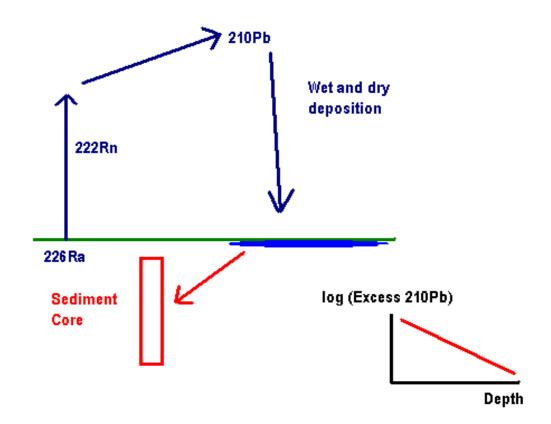


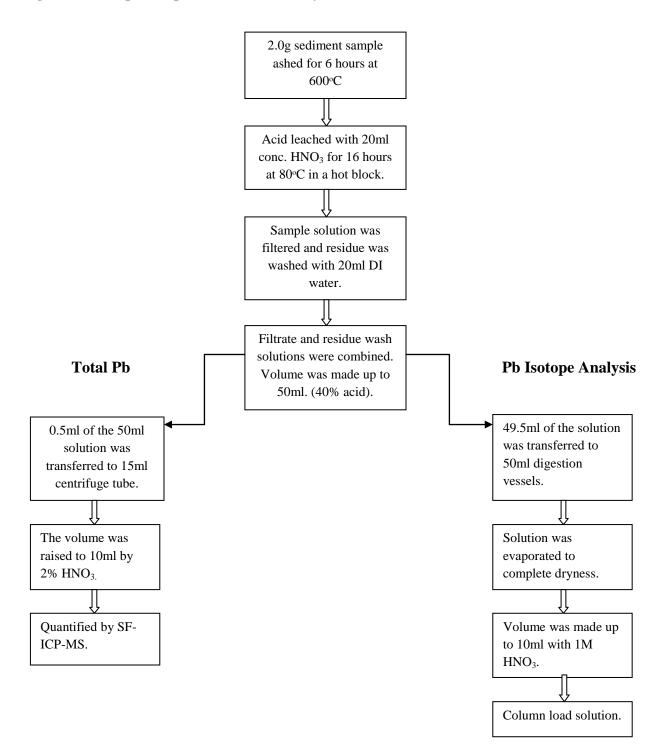
Figure 16. Upward diffusion of ²²²Rn and subsequent deposition of ²¹⁰Pb (excess) on the sediment surface [7].

OBJECTIVES

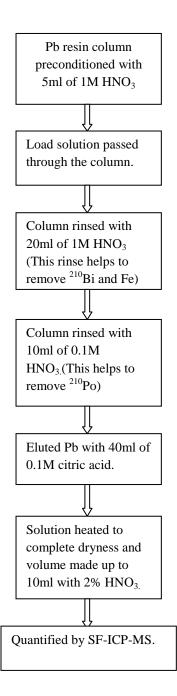
- Determine the feasibility of using ICPMS for ²¹⁰Pb age-dating of sediments
- Analyze total-Pb in the sediment cores and determine changes with time (depth).
- Determine Pb isotopic ratios in open water and wetland cores to see if they can be used to determine the source(s) of lead in Hampton and Washington lakes.

METHODS

Wetland and open water sediment core samples from Lake Washington (WL1A and WL2 respectively) and open water sediment samples from Hampton Lake (HL2A) were subjected to total Pb and Pb isotopes (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²¹⁰Pb) analysis.


SAMPLE PREPARATION FOR TOTAL Pb ANALYSIS

Two grams of each sediment sample was weighed in a 20 ml glass vial and ashed in a muffle furnace at 600°C for 6 hours. The ashed samples were transferred to already cleaned 50ml tubes and leached with 20ml of concentrated HNO₃ for 8 hours in a hot block. The leached samples were filtered using filters of mesh size 0.45 microns and the leach-ate volume was made to 50ml with de-ionized water. 0.5ml liquid from the diluted leach-ate was transferred to 15ml clean centrifuge tubes and the volume was made up to 10ml with 2% HNO₃. Sample preparation process is summarized in figure 17.


SAMPLE PREPARATION FOR LEAD ISOTOPE (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²¹⁰Pb) ANALYSIS

Two grams of each sediment sample was weighed in a 20 ml glass vial and ashed in a muffle furnace at 600 °C for 6 hours. The ashed samples were transferred to already cleaned 50ml tubes and leached with 20ml of concentrated HNO_3 for 8 hours in a hot block. The leached samples were filtered using vacuum filtration with filters of mesh size 0.45 microns and the leach-ate volume was made to 50ml with de-ionized water. 0.5ml liquid from the diluted leachate was used for total Pb analysis. The remaining 49.5 ml liquid was heated to complete dryness in a hot block. The volumes of the samples were made up to 10ml using 1M HNO₃. Pb resin columns were prepared by clogging the narrow end of 5000µl pipette tips with glass wool and filling it up with 0.1 - 0.2gm of Pb resin powder (100 - 150µm). The columns were conditioned by passing 5ml of 1M HNO₃. The sample solutions were then loaded on to the columns and the eluent was discarded. The columns were washed using 20ml of 1M HNO₃. This wash is performed to remove Bi and Fe if present. The eluent was discarded. 10ml of 0.1M HNO₃ was added to the columns to remove any ²¹⁰Po if present. Following the last wash, 40ml of 0.1M citric acid monohydrate solution was added to the columns and the eluent was collected in 50 ml centrifuge tubes. The solutions were heated to complete dryness in a hot block and the volumes were raised to 10ml with 1% HNO₃. The sample solutions and two method blanks were then analyzed for ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²¹⁰Pb using Element XR. Sample preparation and column chemistry processes are summarized in figures 17 and 18. It should be noted that a Pb-isotope reference material (NIST 981) was included in the analyses.

Figure 17. Sample Preparation for Pb analysis

Figure 18. Column Chemistry for Pb isotope separation.

COLUMN CHEMISTRY

The extractant in Pb resin 4,4"(5)-di-t-butylcyclohexano 18-crown-6 in isodecanol (figure 19). Figures 20 and 21 show the uptake of Pb with monovalent and divalent metal ions respectively. The retention capacity (k') of Pb is higher than 100 in nitric acid concentrations ranging from 0.1M to 10M [24].

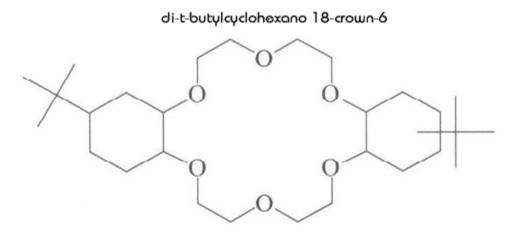


Figure 19. 4,4"(5)-di-t-butylcyclohexano 18-crown-6 in isodecanol [24]

The assumed extraction equilibrium is as follows [24]:

$$Pb^{2+} + 2NO_3^- + \overline{E} \Leftrightarrow \overline{Pb(NO_3)_2E}$$

with E = crown ether.

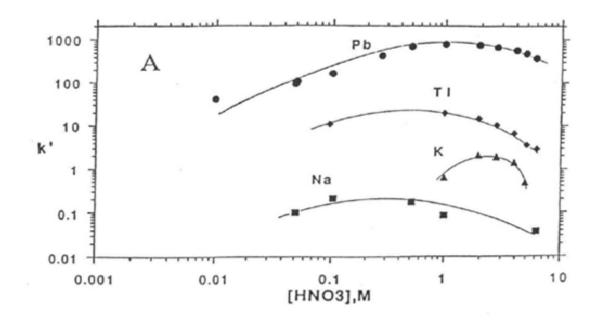


Figure 20. Nitric acid dependancy of selected monovalent metals on Pb resin [24].

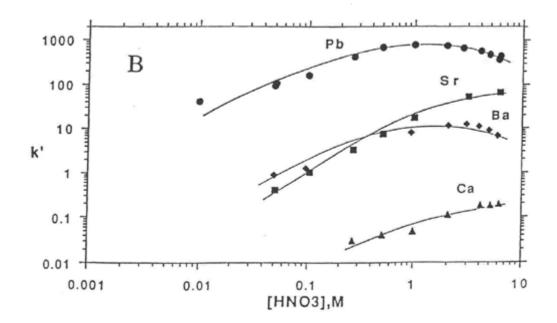


Figure 21. Nitric acid dependancy of selected divalent metals on Pb resin [24].

ICPMS Analysis

Sample handling preparation of standards and reagents were performed in clean rooms under laminar flow clean air benches to minimize the risk of contamination. All ICP-MS measurements were carried out using an Element XR (Thermo Fisher), figure 20. For total Pb and isotopic measurements (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²¹⁰Pb), a high efficiency sample introduction system APEX Q desolvation unit was utilized to minimize hydride formation. SF-ICP-MS operating conditions are summarized in table 4. Use of SF-ICP-MS provides good accuracy and precision and detection limits within femtogram levels.

The common polyatomic interferences in the detection of ²¹⁰Pb are the following:

- a) Formation of a massive peak at mass 208. This peak tails to the adjacent masses 209 and 210. This is from the ions losing energy by collisions with residual gas molecules in the analyzer [25].
- b) Formation of ²⁰⁸Pb¹H¹H. Since separation of stable and radioactive isotopes using chromatographic resins is impossible, the solution to this could be through hydrogen removal [25].

Parameter	Operating Condition
Forward Power	1450
Cool gas flow rate	16 L/min
Auxiliury gas flow rate	1.0 L/min
Sample gas flow rate	1.2 L/min
Mass Window	5
Scan type	Escan
Integration window	5
Samples/peak	100
Dwell time	0.05s

Table 4. Operating Conditions of the SF-ICP-MS

RESULTS AND DISCUSSION

Total-Pb: The average lead concentrations and lead isotopic compositions of Washington Lake (WL1A and WL2) cores and Hampton Lake (HL2A) cores are given in table 5. Detailed Pb concentrations for the cores (WL1A, WL2, HL2A) are presented in the appendix (tables 9 and 10). Total Pb concentrations ranged from about 4-12 ppm in all the three sediment cores, which is slightly below the natural Pb content in soil [26]. The variation in total-Pb concentration with depth (time) for HL is presented in figure 21; the WL cores are not shown because chronology suggests that they were mixed since deposition. The concentration rises from about 6 ppm during the early part of last century to ~12 ppm during the 1950's and early 1960's, a time when leaded gasoline use was relatively high, then diminishes to ~7 ppm in the most recent (surface) sediment. The 6 ppm concentration likely reflects the background levels

from naturally-occurring lead. Nevertheless, this profile should be viewed with caution until a more detailed profile with greater resolution (more samples) is determined.

Oxbow Lake ID	Total-Pb (ppm)	²⁰⁸ Pb/ ²⁰⁷ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²¹⁰ Pb (cps)
WL1A	7.86	2.49	1.22	2.02	0.81	294
WL2	4.03	2.47	1.22	2.03	0.82	219
HL2A	8.48	2.48	1.22	2.03	0.82	400

Table 5. Mean Pb Concentration and Pb Isotopic compositions in Washington andHampton Lakes.

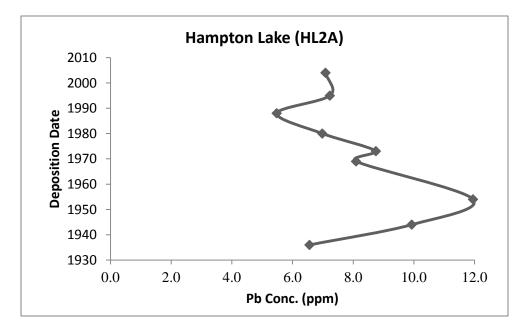


Figure 22. Deposition date vs. Pb conc. in Hampton Lake

LEAD ISOTOPES: Lead isotopes are the products of radioactive decay of other isotopes. Their levels and distribution in a geologic sample depends in part upon the age and environmental conditions of the source material. Isotopes of Pb have long been used in fingerprinting sources of Pb contamination [27]. This can be accomplished using a two component mixing diagram (isotopic plot). A mixing diagram (figure 23) can be constructed by plotting two different ratios with common denominator of any two well established Pb sources.

Samples that plot along a mixing line comprise of mixtures of both the end members. Samples that deviate from the line indicate a different source.

Results for the three sediment cores (WL1A, WL2 and HL2A) are provided in the Appendix (Tables 9-10). Overall, the mean 207 Pb/ 206 Pb isotopic ratio was 0.82, and the mean 208 Pb/ 206 Pb ratio was 2.03. Replicate analysis of NIST 981 (~1.7 µg on column) resulted in a relative standard deviation (RSD) of 0.27 and 0.48 for 208/206 and 207/206, respectively. Experimentally established ratios differed from certified ratios by no more 0.42%. Data herein were not corrected for mass bias, which is expected to be smaller than the observed experimentally variability.

A mixing diagram was constructed based upon literature values, with "natural" Pb from mineral phases (e.g., iron oxides, aluminosilicates) in soil, American ores/leaded gasoline, and coal as possible end members (figure 24) [28, 29, 30, 31]. The lead isotopic signatures for the sediment samples generally fall on a straight line within the "natural" Pb region, but gasoline and coal can't be ruled out. Data scattering around the line between the end members likely reflects variability in the analysis rather than additional sources with different isotopic signatures.

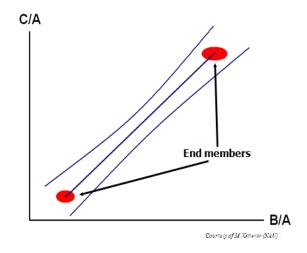
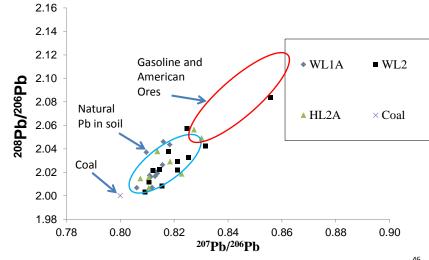



Figure 23. An example of two component mixing diagram [7].

Pb: Results

Oval regions generalized from Ettler et al. (2004) Anal. Bioanal. Chem 378:311-31746

Figure 24. ²⁰⁸Pb/²⁰⁶Pb vs. ²⁰⁷Pb/²⁰⁶Pb mixing diagram for sediments from Hampton and Washington Lakes [11].

²¹⁰**Pb:** Determination of ²¹⁰Pb in the sediment samples by ICP-MS proved to be difficult. The levels of ²¹⁰Pb were expected to decrease with depth but instead we found a correlation with total Pb (figure 25) in Hampton Lake open water. This suggests that interference from stable Pb perhaps a ²⁰⁸PbHH⁺ and /or the tail of the large ²⁰⁸Pb (referred to as abundance sensitivity) peak is present. Because we were unable to mitigate these interferences using different instrumental parameters and sample introduction techniques, further study was stopped. Possible solutions to this problem include using a collision cell to minimize polyatomic interferences, and to increase sensitivity using the new jet-interface option for the ICPMS, which has been shown to enhance signal 100x.

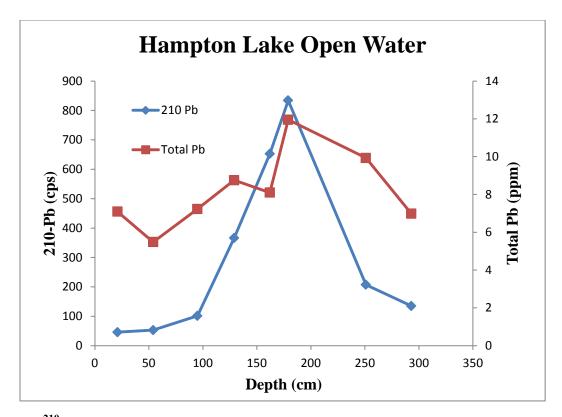


Figure 25. ²¹⁰Pb counts and total-Pb concentration versus depth (x axis).

SIGNIFCANT FINDINGS AND RECOMMENDATIONS

Analyses of an undisturbed core yielded a Pu peak at a depth which is in good agreement with conventional ¹³⁷Cs and ²¹⁰Pb dating. The column method yielded better recoveries compared to the batch method. Open water cores provided Pu profiles more conducive for dating compared to wetland cores; wetlands generally had lower sedimentation rates and appeared (sometimes) to have been mixed since deposition. It is recommended that future work utilize the column method and include more samples to obtain a higher resolution chronology. Overall, this study has demonstrated that ICPMS can serve a useful role in rapidly identifying sediments that have experienced a degree of mixing since deposition, and thus can be used as a screening tool, eliminating time-consuming and costly ²¹⁰Pb analyses on such cores. Moreover, because the methodology has now been established in our lab (there is a significant learning curve), we can provide Pu analyses with isotopic ratios when needed by the Mississippi water resources research community.

For lead, the analytical procedure developed in this work and detailed in this report allows total-Pb and Pb isotope (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) determinations at ppm levels in sediment samples using ICP-MS. Isotopic plots suggest that the Pb likely stems from natural sources, although both coal and leaded gasoline may provide a slight contribution. This study demonstrates that ICP-MS is a powerful tool for environmental studies using Pb ratios to detect different sources of Pb. Unfortunately, the results for ²¹⁰Pb by ICPMS were less promising. The counts at mass 210 were low and subject to interferences. Two approaches are suggested to overcome these issues: increase sensitivity (a new jet-interface option has been shown to enhance signal >100x), and remove polyatomic interferences using a collision cell.

Information transfer: Publications resulting from this work include a paper in the 2012 Mississippi Water Resource Conference Proceedings. This work also contributed toward a Master's thesis by Ms. Pragya Chakravarty titled "Elemental and Isotopic Analysis of Sediments from Oxbow Lakes in the Mississippi Delta" (University of Mississippi, 2012). The current report contains elements from each of those reports.

LITERATURE CITED

- 1. Wren D.G.; Davidson G.R.; Using lake sedimentation rates to quantify the effectiveness of erosion control in watersheds. Journal of Soil and Water Conservation. 66(5):313-322, doi :10.2489/jswc.66.5.313.2011
- Wren D.G.; Davidson G.R.; Galicki S. J.; Walker W.G., The evolution of an Oxbow Lake in the Mississippi alluvial floodplain. *Journal of soil and water conservation*.63 (2007) 129-135.
- 3. GeoEve, State of Arkansas, USDA Farm Service Agency Map data (2011) Google Terms (March 9, 2012).
- 4. Epov V.N.; Evans R.D.; Zheng J.; Donard O.F.X.; Yamada M., Rapid fingerprinting of ²³⁹Pu and ²⁴⁰Pu in environmental samples with high U levels using on-line ion chromatography coupled with high sensitivity quadrupole ICP-MS detection. *Journal of Analytical Atomic Spectrometry*. 22(2007) 1131-1137
- Ketterer M.E.; Hafer K.M.; Jones V.J.; Appleby P.G., Rapid dating of sediments in Loch Ness: Inductively coupled plasma mass spectrometric measurements of global fallout plutonium. *Science of Total Environment* 322 (2004) 221 – 229
- Donard O.X.F.; Bruneau F.; Moldovan M. Garraud H.; Epov V.N.; Boust D. Multi isotopic determination of plutonium (²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu and ²⁴²Pu) in marine sediments using sector field inductively coupled plasma mass spectrometry. *Analytica Chimica Acta* 587 (2007) 170-179.
- 7. Diagram used with permission from Dr. M. Ketterer (NAU).
- 8. TEVA Resin, **2008.** Triskem Sharing Innovation. http://www.triskeminternational.com/en/iso_album/ft_resine_teva_en.pdf (April 25, 2012).
- Clark D., Chemical Complexities of Plutonium. 2000. The Complexation of Coordination Chemistry. *Los Alamos Science Number 26*. http://www.fas.org/sgp/othergov/doe/lanl/pubs/00818038.pdf (July 18, 2012)
- 10. Thermo Sector Field ICPMS. Used with permission from Thermo Fisher.
- Reimann C.; Flem B.; Fabian K.; Burke M.; Ladenbereger A.; Negrel P.; Demetraides A.; Hoogewerff J.; The GEMAS Project Team. Lead and lead isotopes in agricultural soils in Europe – The continental perspective. *Applied Geochemistry*, 27 (2012) 532-542.
- 12. Horwitz E.P.; Dietz M.L.; Rhoads S.; Felinto C.; Gale N.H.; Houghton J.; A lead selective extraction chromatographic resin and its application to the isolation of lead from geological samples. *Analytica Chimica Acta* 292 (**1994**) 263 273.
- 13. Diagram used with permission from Dr. Davidson G.R. (UM) and Dr. Wren D.G. (NSL).
- 14. Pb Resin, **2010.** Radiochemistry, Eichrom expertise, collaboration, results. http://www.eichrom.com/products/info/pb_resin.cfm (July 18, 2012).
- 15. Amr M.A.; Saad-Al K.A.; Helal A.L., Ultra –trace measurements of ²¹⁰Pb in natural occurring radioactive materials by ICP-MS. *Nuclear Instruments and Methods in Physics Research*.615 (**2010**) 237-241.
- Biomarkers/ Environmental Levels, 2007. ToxGuideTM for Lead. U.S. Department of Health and Human Services. http://www.atsdr.cdc.gov/toxguides/toxguide-13.pdf (June 3, 2012)
- 17. Dunlap C.E.; Steinnes E.; Flegal A.R. A synthesis of Lead isotopes in two millennia of European air. *Earth and Planetary Science Letters*. 167 (**1999**) 81-88.
- 18. Krachler M., Zheng J.; Fisher D.; Shotyk W. Direct Determination of Lead Isotopes (206Pb, 207Pb, 208Pb) in Arctic Ice Samples at Picogram per Gram Levels Using

Inductively Coupled Plasma – Sector Field MS Coupled with a High – Efficiency Sample Introduction System. *Analytical Chemistry*. 76 (**2004**) 5510 – 5517.

- 19. Laiviere D., Reiber K.M.; Evans R.D.; Cornett R.J.' Determination of ²¹⁰Pb at ultra trace levels in water by ICP-MS. *Analytica Chimica Acta*. 549 (**2005**) 188-196.
- 20. Gremillion P.T.; Toney J.L. Metals deposition in Northern Arizona reservoirs. Final draft report submitted on March 24, **2005** to Arizona Department of Environmental Quality.
- 21. Ettler V., Mihaljevic M. Komarek M. ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by Pb smelting : tracing the sources of pollution. *Anal. Bioanal. Chem* 378. (2004) 311-317

APPENDIX

Year	Depth(cm)	Concentration (ppt)	Concentration (ppt)	Ratio	Activity (Bq/Kg)	
		²³⁹ Pu	²⁴⁰ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²³⁹⁺²⁴⁰ Pu	
1991	11	0.03	0.01	0.17	0.13	
1982	16	0.04	0.01	0.18	0.14	
1973	21	0.04	0.01	0.18	0.16	
1963	26	0.04	0.01	0.18	0.16	
1954	31	0.05	0.01	0.17	0.18	
1945	36	0.05	0.01	0.17	0.18	
1925	46	0.05	0.01	0.17	0.20	
1906	51	0.06	0.01	0.17	0.22	
1886	56	0.05	0.01	0.16	0.18	
Avg		0.05	0.01	0.17	0.17	
SD		0.008	0.001	0.007	0.028	
		Activity(mBq/g)	Recovery (%)	Atom Ratio (²⁴⁰ Pu/	²³⁹ Pu)	
Reference (Cert. Valu		6.56±0.20	100.9	0.1915±0.0030		
Reference (Found Va		6.62	100.7	0.17		

Table 6. Pu concentration, ²⁴⁰Pu/²³⁹Pu ratio and ²³⁹⁺²⁴⁰Pu activity for Roundaway Lake (RL1A)

 Table 7. Pu concentration, ²⁴⁰Pu/²³⁹Pu ratio and ²³⁹⁺²⁴⁰Pu activity for Washington Lake (WL1A)

Year	Depth		ntration (ppt)	Ratio	Activity (Bq/Kg)
		²³⁹ Pu	²⁴⁰ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²³⁹⁺²⁴⁰ Pu
2008	1	0.14	0.03	0.18	0.54
2000	8	0.15	0.02	0.16	0.56
1995	11	0.11	0.02	0.19	0.43
1989	15	0.15	0.03	0.18	0.58
1980	21	0.20	0.03	0.16	0.73
1977	23	0.03	0.00	0.16	0.09
1971	26	0.06	0.01	0.17	0.23
1969	27	0.05	0.01	0.21	0.21
1963	30	0.14	0.03	0.18	0.54
1958	33	0.02	0.00	0.17	0.06
	Avg	0.11	0.02	0.18	0.40
	SD	0.06	0.01	0.01	0.23

Sample ID	Depth (cm)	Deposition Date	Total-Pb (ppm)	²⁰⁸ Pb/ ²⁰⁷ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	²¹⁰ Pb (cps*)
WL1A-1	3	2006	9.29	2.48	2.02	0.81	1.23	90.4
WL1A-2	11	1995	10.48	2.49	2.02	0.81	1.23	153.2
WL1A-3	15	1989	8.94	2.48	2.03	0.82	1.21	415
WL1A-4	23	1978	8.81	2.50	2.04	0.82	1.21	227.4
WL1A-5	27	1968	5.25	2.47	2.01	0.81	1.23	58.6
WL1A-6	33	1958	6.00	2.52	2.04	0.81	1.23	287.5
WL1A-7	40	1948	5.95	2.49	2.01	0.81	1.20	644.2
WL1A-8	44	1939	7.94	2.48	2.02	0.81	1.22	497.4
WL1A-9	50	1928	8.29	2.48	2.02	0.81	1.23	110.3
WL1A- 10	57	1916	9.27	2.48	2.02	0.81	1.21	34.9
WL1A-	60	1000	1.00	0.51	2.05	0.02	1.01	610 5
11	62	1908	4.38	2.51	2.05	0.82	1.21	618.5
		Avg	7.69	2.49	2.02	0.81	1.22	285.22
		SD	1.97	0.01	0.01	0.00	0.01	224.76

Table 8. Pb concentration and Isotopic Pb signatures for WL1A.

Table 9. Pb concentration and Isotopic Pb signatures for WL2.

Sample ID	Depth (cm)	Deposition Date	Total-Pb (ppm)	²⁰⁸ Pb/ ²⁰⁷ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	²¹⁰ Pb (cps*)
WL2-1	10	1992	6.42	2.48	2.01	0.81	1.21	104.9
WL2-2	11	1990	6.75	2.46	2.02	0.82	1.22	39.4
WL2-3	12	1988	2.20	2.46	2.03	0.83	1.20	73.1
WL2-4	13	1985	6.89	2.49	2.04	0.82	1.22	51.2
WL2-5	17	1977	6.54	2.43	2.08	0.86	1.23	436
WL2-6	20	1968	3.80	2.48	2.02	0.81	1.17	1389.6
WL2-7	23	1956	7.31	2.46	2.04	0.83	1.22	48.6
WL2-8	25	1948	4.98	2.47	2.03	0.82	1.21	422.4
WL2-9	28	1937	1.52	2.48	2.00	0.81	1.22	51.9
WL2-10	30	1927	1.23	2.49	2.02	0.81	1.22	63.6
WL2-11	31	1922	1.62	2.49	2.06	0.82	1.22	66.8
WL2-12	34	1907	1.73	2.46	2.01	0.82	1.20	33.7
WL2-13	31	1922	1.46	2.48	2.03	0.82	1.22	67.9
		Avg	4.03	2.47	2.03	0.82	1.21	219.16
		SD	2.49	0.02	0.02	0.01	0.01	378.03

Sample ID	Depth (cm)	Deposition Date	Total-Pb (ppm)	²⁰⁸ Pb/ ²⁰⁷ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	²¹⁰ Pb (cps*)
HL2A-1	21	2004	7.09	2.50	2.04	0.81	1.21	46.00
HL2A-2	54	1995	7.23	2.45	2.02	0.82	1.22	52.90
HL2A-3	95	1988	5.48	2.50	2.04	0.81	1.23	101.30
HL2A-4	129	1980	6.99	2.47	2.05	0.83	1.22	366.10
HL2A-5	162	1973	8.76	2.48	2.06	0.83	1.22	652.30
HL2A-6	179	1969	8.10	2.48	2.03	0.82	1.24	834.20
HL2A-7	251	1954	11.95	2.49	2.02	0.81	1.22	207.20
HL2A-8	293	1944	9.93	2.49	2.01	0.81	1.22	135.10
HL8A-9	332	1936	6.57	2.48	2.01	0.81	1.21	978.00
HL2A-10	129	1980	10.00	2.47	2.01	0.81	1.22	331.80
HL2A-11	162	1973	11.23	2.46	2.03	0.82	1.22	696.20
		Avg	8.48	2.48	2.03	0.82	1.22	400.10
		SD	2.06	0.02	0.02	0.01	0.01	334.99

Table 10. Pb concentration and Isotopic Pb signatures for HL2A